12.3 幂级数
第三节 幂级数
一、函数项级数的概念
在数学分析中,函数项级数是一个重要的概念。假设我们有一个定义在区间 III 上的函数列 那么由这些函数列构成的表达式
称为定义在区间 III 上的(函数项)无穷级数,简称(函数项)级数。
对于每一个确定的值 x0∈Ix_0 \in Ix0∈I,函数项级数(3-1)成为常数项级数
这个级数(3-2)可能收敛也可能发散。如果级数(3-2)收敛,就称点 x0x_0x0 是函数项级数(3-1)的收敛点;如果级数(3-2)发散,就称点 x0x_0x0 是函数项级数(3-1)的发散点。函数项级数(3-1)的收敛点的全体称为它的收敛域,发散点的全体称为它的发散域。
对应于收敛域内的任意一个数 xxx,函数项级数成为一个收敛的常数项级数,因而有一个确定的和 SSS。这样,在收敛域上,函数项级数的和是 xxx 的函数 S(x)S(x)S(x),通常称 S(x)S(x)S(x) 为函数项级数的和函数,这个函数的定义域就是级数的收敛域,并写成
把函数项级数(3-1)的前 nnn 项的部分和记作 Sn(x)S_n(x)Sn(x),则在收敛域上有
记 Rn(x)=S(x)−Sn(x)R_n(x) = S(x) - S_n(x)Rn(x)=S(x)−Sn(x),Rn(x)R_n(x)Rn(x) 叫做函数项级数的余项(当然,只有 xxx 在收敛域上 Rn(x)R_n(x)Rn(x) 才有意义),并有
通过以上定义和性质的介绍,我们可以更好地理解函数项级数的收敛性及其应用。在数学和工程学的许多领域,函数项级数提供了一种强大的工具,用于逼近和分析复杂函数。
二、幂级数及其收敛性
在函数项级数中,幂级数是一种非常简单而常见的类型。幂级数的形式如下:
其中,常数 a0,a1,a2,…,an,…a_0, a_1, a_2, \ldots, a_n, \ldotsa0,a1,a2,…,an,… 被称为幂级数的系数。例如:
都是幂级数。
幂级数的收敛域与发散域
现在我们来讨论:对于一个给定的幂级数,它的收敛域与发散域是怎样的?也就是说,当 xxx 取数轴上的哪些点时幂级数收敛,取哪些点时幂级数发散?这就是幂级数的收敛性问题。
先看一个例子,考察幂级数
在这个例子中,我们看到,这个幂级数的收敛域是一个区间。事实上,这个结论对于一般的幂级数也是成立的。
我们有如下定理:
阿贝尔定理
定理1(阿贝尔定理):如果幂级数在 x=x0x = x_0x=x0(x0≠0x_0 \neq 0x0=0)处收敛,那么对于满足不等式 ∣x∣<∣x0∣|x| < |x_0|∣x∣<∣x0∣ 的一切 xxx,幂级数绝对收敛。反之,如果幂级数在 x=x0x = x_0x=x0 处发散,那么对于满足不等式 ∣x∣>∣x0∣|x| > |x_0|∣x∣>∣x0∣ 的一切 xxx,幂级数发散。
证明:先设 x0x_0x0 是幂级数 (3-3) 的收敛点,即级数
收敛。根据级数收敛的必要条件,这时有:
于是存在一个常数 MMM,使得
这样级数 (3-3) 的一般项的绝对值
因为当 ∣x∣<∣x0∣|x| < |x_0|∣x∣<∣x0∣ 时,等比级数收敛,所以级数
定理的第二部分可用反证法证明。假设幂级数当 x=x0x = x_0x=x0 时发散而有一点 x1x_1x1,适合 ∣x1∣>∣x0∣|x_1| > |x_0|∣x1∣>∣x0∣ 使级数收敛,则根据本定理的第一部分,级数当 x=x0x = x_0x=x0 时应收敛,这与假设矛盾。定理得证。
收敛半径
推论:如果幂级数不只是仅在 x=0x = 0x=0 点收敛,也不是在整个数轴上都收敛,那么必有一个确定的正数 RRR 存在,使得当 ∣x∣<R|x| < R∣x∣<R 时,幂级数绝对收敛;当 ∣x∣>R|x| > R∣x∣>R 时,幂级数发散;当 ∣x∣=R|x| = R∣x∣=R 时,幂级数可能收敛也可能发散。正数 RRR 通常叫做幂级数的收敛半径,开区间 (−R,R)(-R, R)(−R,R) 叫做幂级数的收敛区间。
如果幂级数 (3-3) 只在 x=0x = 0x=0 处收敛,这时收敛域只有一点 x=0x = 0x=0,但为了方便起见,规定这时收敛半径 R=0R = 0R=0;如果幂级数 (3-3) 对一切 xxx 都收敛,则规定收敛半径 R=+∞R = +\inftyR=+∞,这时收敛域是 (−∞,+∞)(- \infty, + \infty)(−∞,+∞)。
收敛半径的求法
关于幂级数的收敛半径的求法,有下面的定理。
定理2:如果幂级数的系数满足
证明:考察幂级数 (3-3) 的各项取绝对值所成的级数
这级数相邻两项之比为
因此一般项 ∣anxn∣|a_n x^n|∣anxn∣ 不能趋于零,所以 anxna_n x^nanxn 也不能趋于零,从而级数 (3-3) 发散。于是收敛半径 R=pR = pR=p。
如果 p=0p = 0p=0,那么对任何 x≠0x \neq 0x=0,级数 (3-4) 收敛,从而级数 (3-3) 绝对收敛。于是 R=+∞R = +\inftyR=+∞。
考虑幂级数:
解
因为幂级数的系数 an=(−1)na_n = (-1)^nan=(−1)n,我们有:
所以收敛半径 R=11=1R = \frac{1}{1} = 1R=11=1。
对于端点 x=−1x = -1x=−1,级数成为:
此级数发散。
对于端点 x=1x = 1x=1,级数成为交错级数:
此级数收敛。因此,收敛域是 (−1,1](-1, 1](−1,1]。
例2 求幂级数 ∑n=0∞xn\sum_{n=0}^{\infty} x^n∑n=0∞xn 的收敛域
考虑幂级数:
解
因为幂级数的系数 an=1a_n = 1an=1,我们有:
所以收敛半径 R=11=1R = \frac{1}{1} = 1R=11=1,从而收敛域是 (−1,1)(-1, 1)(−1,1)。
考虑幂级数:
解
因为幂级数的系数 an=n!a_n = n!an=n!,我们有:
所以收敛半径 R=10=+∞R = \frac{1}{0} = +\inftyR=01=+∞,从而收敛域是 (−∞,+∞)(-\infty, +\infty)(−∞,+∞)。
考虑幂级数:
此级数缺少奇次幂的项,定理2不能直接应用。我们根据比值审敛法来求收敛半径:
所以收敛半径 R=2R = 2R=2。
考虑幂级数:
解
令 y=x−1y = x - 1y=x−1,上述级数变为:
因为幂级数的系数 an=1a_n = 1an=1,我们有:
当 x=−1x = -1x=−1 时,级数成为:
此级数发散。
当 x=3x = 3x=3 时,级数成为:
此级数发散。
因此,原级数的收敛域为 (−1,3)(-1, 3)(−1,3)。
三、幂级数的运算
设幂级数
及
分别在区间 (−R,R)(-R, R)(−R,R) 及 (−R′,R′)(-R', R')(−R′,R′) 内收敛,对于这两个幂级数,可以进行下列四则运算:
加法
减法
根据收敛级数的基本性质,上面两式在 (−R,R)(-R, R)(−R,R) 与 (−R′,R′)(-R', R')(−R′,R′) 中较小的区间内成立。
乘法
这是两个幂级数的柯西乘积。可以证明上式在 (−R,R)(-R, R)(−R,R) 与 (−R′,R′)(-R', R')(−R′,R′) 中较小的区间内成立。
除法
这里假设 b0≠0b_0 \neq 0b0=0。为了决定系数 c0,c1,c2,⋯ ,cn,⋯c_0, c_1, c_2, \cdots, c_n, \cdotsc0,c1,c2,⋯,cn,⋯,可以将级数 (c0+c1x+c2x2+⋯ )(b0+b1x+b2x2+⋯ )(c_0 + c_1 x + c_2 x^2 + \cdots) (b_0 + b_1 x + b_2 x^2 + \cdots)(c0+c1x+c2x2+⋯)(b0+b1x+b2x2+⋯) 相乘,并令乘积中各项的系数分别等于级数中同次幂的系数,即得
由这些方程就可以顺序地求出 c0,c1,c2,⋯c_0, c_1, c_2, \cdotsc0,c1,c2,⋯。
相除后所得的幂级数的收敛区间可能比原来两级数的收敛区间小得多。
幂级数的和函数的性质
幂级数的和函数具有以下重要性质:
性质1
幂级数的和函数 s(x)s(x)s(x) 在其收敛域 III 上连续。
性质2
幂级数的和函数 s(x)s(x)s(x) 在其收敛域 III 上可积,并有逐项积分公式
逐项积分后所得到的幂级数和原级数有相同的收敛半径。
性质3
幂级数的和函数 s(x)s(x)s(x) 在其收敛区间 (−R,R)(-R, R)(−R,R) 内可导,且有逐项求导公式
逐项求导后所得到的幂级数和原级数有相同的收敛半径。
反复应用上述结论可得:幂级数的和函数 s(x)s(x)s(x) 在其收敛区间 (−R,R)(-R, R)(−R,R) 内具有任意阶导数。
解
先求收敛域。由
得收敛半径 R=1R = 1R=1。
在端点 x=−1x = -1x=−1 处,幂级数成为:
是收敛的交错级数;在端点 x=1x = 1x=1 处,幂级数成为:
是发散的。因此收敛域为 (−1,1)(-1, 1)(−1,1)。
设和函数为 s(x)s(x)s(x),即
于是
利用性质3,逐项求导,并由
逐项求导公式可得:
对上式从0到x积分,得
其中 CCC 是积分常数。由于 s(0)=1s(0) = 1s(0)=1,我们得到 C=1C = 1C=1,所以
这个例子展示了如何通过逐项求导和积分来求解幂级数的和函数,同时验证了和函数在其收敛区间内的连续性和可导性。