数学分析_幂级数收敛分析
问题提出:
1.如何用根式判别法、比值判别法推出收敛半径的?
2.和数项级数的根式判别法、比值判别法,判别敛散性有何联系?
先说数项级数
我们知道对于等比数列,公比q<1,级数才收敛
所以根式判别法、比值判别法实际求的就是公比q
lim
n
→
+
∞
u
n
+
1
u
n
=
ρ
a
n
d
lim
n
→
∞
u
n
n
=
ρ
\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = ρ \quad and \quad \lim_{n\rightarrow{\infty}} \sqrt[n]{u_n} = ρ
n→+∞limunun+1=ρandn→∞limnun=ρ
这里ρ就是公比,举例
0.
5
n
→
ρ
=
0.5
,
2
n
→
ρ
=
2
0.5^n\rightarrow ρ = 0.5,2^n\rightarrow ρ = 2
0.5n→ρ=0.5,2n→ρ=2
所以ρ<1一定收敛,而ρ = 1,不一定发散,比如 1 n 2 \large\frac{1}{n^2} n21 是收敛的
结论:ρ<1,数项级数收敛
再说幂级数
以
∑
n
=
0
∞
a
n
(
x
−
5
)
n
\sum_{n=0}^∞a_n(x-5)^n
∑n=0∞an(x−5)n为例说明,同样地,先求公比
lim
n
→
∞
a
n
(
x
−
5
)
n
n
=
ρ
(
x
−
5
)
=
ρ
r
<
1
\lim_{n\rightarrow{\infty}} \sqrt[n]{a_n(x-5)^n} = ρ(x-5)= ρr <1
n→∞limnan(x−5)n=ρ(x−5)=ρr<1
即
r
<
1
ρ
r <\large\frac{1}{ρ}
r<ρ1,所以可以直接通过幂级数中的数项级数部分求出ρ,来找到收敛半径,临界点要带入级数中验算才能判断能不能取等。