隐函数求导例题

已知 x y = y x x^y=y^x xy=yx确定了 y y y x x x的函数,求 y ′ y' y

解:
\qquad 两边同时取对数得 y ln ⁡ x = x ln ⁡ y y\ln x=x\ln y ylnx=xlny

\qquad 再同时对 x x x求导得 y ′ ln ⁡ x + y x = x y ′ y + ln ⁡ y y'\ln x+\dfrac yx=\dfrac{xy'}{y}+\ln y ylnx+xy=yxy+lny

\qquad 移项得 y ′ ( ln ⁡ x − x y ) = ln ⁡ y − y x y'(\ln x-\dfrac xy)=\ln y-\dfrac yx y(lnxyx)=lnyxy

y ′ = ln ⁡ y − y x ln ⁡ x − x y = x y ln ⁡ y − y 2 x y ln ⁡ x − x 2 \qquad y'=\dfrac{\ln y-\frac yx}{\ln x-\frac xy}=\dfrac{xy\ln y-y^2}{xy\ln x-x^2} y=lnxyxlnyxy=xylnxx2xylnyy2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值