已知 x y = y x x^y=y^x xy=yx确定了 y y y是 x x x的函数,求 y ′ y' y′
解:
\qquad
两边同时取对数得
y
ln
x
=
x
ln
y
y\ln x=x\ln y
ylnx=xlny
\qquad 再同时对 x x x求导得 y ′ ln x + y x = x y ′ y + ln y y'\ln x+\dfrac yx=\dfrac{xy'}{y}+\ln y y′lnx+xy=yxy′+lny
\qquad 移项得 y ′ ( ln x − x y ) = ln y − y x y'(\ln x-\dfrac xy)=\ln y-\dfrac yx y′(lnx−yx)=lny−xy
y ′ = ln y − y x ln x − x y = x y ln y − y 2 x y ln x − x 2 \qquad y'=\dfrac{\ln y-\frac yx}{\ln x-\frac xy}=\dfrac{xy\ln y-y^2}{xy\ln x-x^2} y′=lnx−yxlny−xy=xylnx−x2xylny−y2