设 f f f在 ( a , b ) (a,b) (a,b)内严格单调且连续, x 0 ∈ ( a , b ) x_0\in (a,b) x0∈(a,b), f ′ ( x 0 ) ≠ 0 f'(x_0)\neq 0 f′(x0)=0,则反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f−1(y)在 y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0)处可导,并且 ( f − 1 ) ′ ( y 0 ) = 1 f ′ ( x 0 ) (f^{-1})'(y_0)=\dfrac{1}{f'(x_0)} (f−1)′(y0)=f′(x0)1
证明:
lim
y
→
y
0
f
−
1
(
y
)
−
f
−
1
(
y
0
)
y
−
y
0
=
lim
x
→
x
0
x
−
x
0
f
(
x
)
−
f
(
x
0
)
=
lim
x
→
x
0
1
f
(
x
)
−
f
(
x
0
)
x
−
x
0
=
1
f
′
(
x
0
)
\qquad \lim\limits_{y\rightarrow y_0}\dfrac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\lim\limits_{x\rightarrow x_0}\dfrac{x-x_0}{f(x)-f(x_0)}=\lim\limits_{x\rightarrow x_0}\dfrac{1}{\frac{f(x)-f(x_0)}{x-x_0}}=\dfrac{1}{f'(x_0)}
y→y0limy−y0f−1(y)−f−1(y0)=x→x0limf(x)−f(x0)x−x0=x→x0limx−x0f(x)−f(x0)1=f′(x0)1
也可以写为 d x d y = 1 d y d x \dfrac{dx}{dy}=\dfrac{1}{ \ \frac{dy}{dx} \ } dydx= dxdy 1
例1
求反正弦函数 y = arcsin x y=\arcsin x y=arcsinx的导数。
解:
∵
y
=
arcsin
x
\qquad \because y=\arcsin x
∵y=arcsinx与
x
=
sin
y
x=\sin y
x=siny互为反函数
∴ ( arcsin x ) ′ = 1 ( sin y ) ′ = 1 cos y = 1 1 − sin 2 y = 1 1 − x 2 \qquad \therefore (\arcsin x)'=\dfrac{1}{(\sin y)'}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2 y}}=\dfrac{1}{\sqrt{1-x^2}} ∴(arcsinx)′=(siny)′1=cosy1=1−sin2y1=1−x21
例2
求函数 y = e x + arctan x y=e^x+\arctan x y=ex+arctanx的反函数 x = x ( y ) x=x(y) x=x(y)的导数。
解:
∵
\qquad \because
∵函数
y
=
e
x
+
arctan
x
y=e^x+\arctan x
y=ex+arctanx严格单调递增且可导
\qquad 且 y ′ = e x + 1 x 2 + 1 = e x x 2 + e x + 1 x 2 + 1 y'=e^x+\dfrac{1}{x^2+1}=\dfrac{e^xx^2+e^x+1}{x^2+1} y′=ex+x2+11=x2+1exx2+ex+1
∴ x = x ( y ) \qquad \therefore x=x(y) ∴x=x(y)可导
x ′ ( y ) = 1 y ′ ( x ) = x 2 + 1 e x x 2 + e x + 1 \qquad x'(y)=\dfrac{1}{y'(x)}=\dfrac{x^2+1}{e^xx^2+e^x+1} x′(y)=y′(x)1=exx2+ex+1x2+1
\qquad 其中右式中的 x x x为 x = x ( y ) x=x(y) x=x(y),所以右式为 y y y的复合函数
x = x ( y ) \qquad x=x(y) x=x(y)的导数为 x ′ ( y ) = x 2 + 1 e x x 2 + e x + 1 x'(y)=\dfrac{x^2+1}{e^xx^2+e^x+1} x′(y)=exx2+ex+1x2+1