反函数求导

f f f ( a , b ) (a,b) (a,b)内严格单调且连续, x 0 ∈ ( a , b ) x_0\in (a,b) x0(a,b) f ′ ( x 0 ) ≠ 0 f'(x_0)\neq 0 f(x0)=0,则反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0)处可导,并且 ( f − 1 ) ′ ( y 0 ) = 1 f ′ ( x 0 ) (f^{-1})'(y_0)=\dfrac{1}{f'(x_0)} (f1)(y0)=f(x0)1

证明:
lim ⁡ y → y 0 f − 1 ( y ) − f − 1 ( y 0 ) y − y 0 = lim ⁡ x → x 0 x − x 0 f ( x ) − f ( x 0 ) = lim ⁡ x → x 0 1 f ( x ) − f ( x 0 ) x − x 0 = 1 f ′ ( x 0 ) \qquad \lim\limits_{y\rightarrow y_0}\dfrac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\lim\limits_{x\rightarrow x_0}\dfrac{x-x_0}{f(x)-f(x_0)}=\lim\limits_{x\rightarrow x_0}\dfrac{1}{\frac{f(x)-f(x_0)}{x-x_0}}=\dfrac{1}{f'(x_0)} yy0limyy0f1(y)f1(y0)=xx0limf(x)f(x0)xx0=xx0limxx0f(x)f(x0)1=f(x0)1


也可以写为 d x d y = 1   d y d x   \dfrac{dx}{dy}=\dfrac{1}{ \ \frac{dy}{dx} \ } dydx= dxdy 1


例1

求反正弦函数 y = arcsin ⁡ x y=\arcsin x y=arcsinx的导数。

解:
∵ y = arcsin ⁡ x \qquad \because y=\arcsin x y=arcsinx x = sin ⁡ y x=\sin y x=siny互为反函数

∴ ( arcsin ⁡ x ) ′ = 1 ( sin ⁡ y ) ′ = 1 cos ⁡ y = 1 1 − sin ⁡ 2 y = 1 1 − x 2 \qquad \therefore (\arcsin x)'=\dfrac{1}{(\sin y)'}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2 y}}=\dfrac{1}{\sqrt{1-x^2}} (arcsinx)=(siny)1=cosy1=1sin2y 1=1x2 1


例2

求函数 y = e x + arctan ⁡ x y=e^x+\arctan x y=ex+arctanx的反函数 x = x ( y ) x=x(y) x=x(y)的导数。

解:
∵ \qquad \because 函数 y = e x + arctan ⁡ x y=e^x+\arctan x y=ex+arctanx严格单调递增且可导

\qquad y ′ = e x + 1 x 2 + 1 = e x x 2 + e x + 1 x 2 + 1 y'=e^x+\dfrac{1}{x^2+1}=\dfrac{e^xx^2+e^x+1}{x^2+1} y=ex+x2+11=x2+1exx2+ex+1

∴ x = x ( y ) \qquad \therefore x=x(y) x=x(y)可导

x ′ ( y ) = 1 y ′ ( x ) = x 2 + 1 e x x 2 + e x + 1 \qquad x'(y)=\dfrac{1}{y'(x)}=\dfrac{x^2+1}{e^xx^2+e^x+1} x(y)=y(x)1=exx2+ex+1x2+1

\qquad 其中右式中的 x x x x = x ( y ) x=x(y) x=x(y),所以右式为 y y y的复合函数

x = x ( y ) \qquad x=x(y) x=x(y)的导数为 x ′ ( y ) = x 2 + 1 e x x 2 + e x + 1 x'(y)=\dfrac{x^2+1}{e^xx^2+e^x+1} x(y)=exx2+ex+1x2+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值