前置知识
求近似值
求 ln ( 1.02 ) \ln(1.02) ln(1.02)的近似值,使得误差不超过 1 0 − 5 . 10^{-5}. 10−5.
解:
ln
(
1
+
x
)
\qquad \ln(1+x)
ln(1+x)带拉格朗日余项的
n
n
n阶麦克劳林公式为
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
⋯
+
(
−
1
)
n
−
1
n
x
n
+
(
−
1
)
n
(
ξ
+
1
)
−
n
n
+
1
x
n
+
1
(
ξ
∈
(
0
,
x
)
)
\ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+\dfrac{(-1)^{n-1}}{n}x^n+\dfrac{(-1)^n(\xi+1)^{-n}}{n+1}x^{n+1} \qquad (\xi\in(0,x))
ln(1+x)=x−2x2+3x3−⋯+n(−1)n−1xn+n+1(−1)n(ξ+1)−nxn+1(ξ∈(0,x))
\qquad
取
x
=
0.02
x=0.02
x=0.02得
ln
(
1.02
)
=
0.02
−
0.0
2
2
2
+
0.0
2
3
3
−
⋯
+
(
−
1
)
n
−
1
n
0.0
2
n
+
(
−
1
)
n
(
ξ
+
1
)
−
n
n
+
1
×
0.0
2
n
+
1
(
ξ
∈
(
0
,
0.02
)
)
\ln(1.02)=0.02-\dfrac{0.02^2}{2}+\dfrac{0.02^3}{3}-\cdots+\dfrac{(-1)^{n-1}}{n}0.02^n+\dfrac{(-1)^n(\xi+1)^{-n}}{n+1}\times0.02^{n+1} \qquad (\xi\in(0,0.02))
ln(1.02)=0.02−20.022+30.023−⋯+n(−1)n−10.02n+n+1(−1)n(ξ+1)−n×0.02n+1(ξ∈(0,0.02))
\qquad
若取
n
=
2
n=2
n=2,则
(
ξ
+
1
)
−
2
3
×
0.0
2
3
<
8
3
×
1
0
−
6
<
1
0
−
5
\dfrac{(\xi+1)^{-2}}{3}\times0.02^3<\dfrac{8}{3}\times10^{-6}<10^{-5}
3(ξ+1)−2×0.023<38×10−6<10−5
\qquad
所以
ln
(
1.02
)
≈
0.02
+
0.0
2
2
2
≈
0.0198
\ln(1.02)\approx 0.02+\dfrac{0.02^2}{2}\approx0.0198
ln(1.02)≈0.02+20.022≈0.0198
不等式证明
证明不等式
∣
ln
x
y
x
−
y
−
1
y
∣
≤
1
2
∣
x
−
y
∣
(
x
,
y
≥
1
,
x
≠
y
)
|\dfrac{\ln \frac xy}{x-y}-\dfrac 1y|\leq \dfrac 12|x-y| \qquad (x,y\geq 1,x\neq y)
∣x−ylnyx−y1∣≤21∣x−y∣(x,y≥1,x=y)
证明:
\qquad
将函数
ln
x
\ln x
lnx在点
y
y
y处展开为带拉格朗日余项的
1
1
1阶泰勒公式
ln
x
=
ln
y
+
(
x
−
y
)
1
y
−
1
2
(
x
−
y
)
2
1
ξ
2
\ln x=\ln y+(x-y)\dfrac 1y-\dfrac 12(x-y)^2\dfrac{1}{\xi^2}
lnx=lny+(x−y)y1−21(x−y)2ξ21
\qquad
其中
ξ
\xi
ξ介于
x
,
y
x,y
x,y之间,整理得
ln
x
−
ln
y
−
(
x
−
y
)
1
y
=
−
1
2
(
x
−
y
)
2
1
ξ
2
\ln x-\ln y-(x-y)\dfrac 1y=-\dfrac 12(x-y)^2\dfrac{1}{\xi^2}
lnx−lny−(x−y)y1=−21(x−y)2ξ21
\qquad
因为
ξ
\xi
ξ介于
x
,
y
x,y
x,y之间,且
x
,
y
≥
1
x,y\geq 1
x,y≥1,所以
ξ
≥
1
\xi\geq 1
ξ≥1,由此可得
∣
ln
x
−
ln
y
x
−
y
−
1
y
∣
=
1
2
∣
(
x
−
y
)
1
ξ
2
∣
≤
1
2
∣
x
−
y
∣
|\dfrac{\ln x-\ln y}{x-y}-\dfrac 1y|=\dfrac 12|(x-y)\dfrac{1}{\xi^2}|\leq\dfrac 12|x-y|
∣x−ylnx−lny−y1∣=21∣(x−y)ξ21∣≤21∣x−y∣
得证
∣
ln
x
y
x
−
y
−
1
y
∣
≤
1
2
∣
x
−
y
∣
|\dfrac{\ln \frac xy}{x-y}-\dfrac 1y|\leq \dfrac 12|x-y|
∣x−ylnyx−y1∣≤21∣x−y∣
函数及其导数证明
设函数
y
=
f
(
x
)
y=f(x)
y=f(x)在
[
0
,
1
]
[0,1]
[0,1]上有连续的三阶导数,且
f
(
0
)
=
f
′
(
1
2
)
=
0
,
f
(
1
)
=
1
2
.
f(0)=f'(\dfrac 12)=0,f(1)=\dfrac 12.
f(0)=f′(21)=0,f(1)=21.
求证:存在
ξ
∈
(
0
,
1
)
\xi\in(0,1)
ξ∈(0,1),使得
f
′
′
′
(
ξ
)
=
12.
f'''(\xi)=12.
f′′′(ξ)=12.
证明:
\qquad
利用
f
f
f的带拉格朗日余项的
2
2
2阶泰勒公式,取
x
0
=
1
2
x_0=\dfrac 12
x0=21,可得
f
(
1
)
=
f
(
1
2
)
+
1
2
f
′
(
1
2
)
+
1
8
f
′
′
(
1
2
)
+
1
48
f
′
′
′
(
ξ
1
)
(
ξ
1
∈
(
1
2
,
1
)
)
f
(
0
)
=
f
(
1
2
)
−
1
2
f
′
(
1
2
)
+
1
8
f
′
′
(
1
2
)
−
1
48
f
′
′
′
(
ξ
2
)
(
ξ
2
∈
(
0
,
1
2
)
)
f(1)=f(\dfrac 12)+\dfrac 12f'(\dfrac 12)+\dfrac 18f''(\dfrac 12)+\dfrac{1}{48}f'''(\xi_1) \qquad (\xi_1\in(\dfrac 12,1)) \\ \qquad \\ f(0)=f(\dfrac 12)-\dfrac 12f'(\dfrac 12)+\dfrac 18f''(\dfrac 12)-\dfrac{1}{48}f'''(\xi _2)\qquad (\xi_2\in(0,\dfrac 12))
f(1)=f(21)+21f′(21)+81f′′(21)+481f′′′(ξ1)(ξ1∈(21,1))f(0)=f(21)−21f′(21)+81f′′(21)−481f′′′(ξ2)(ξ2∈(0,21))
\qquad
两式相减得
1
2
−
0
=
0
+
1
48
f
′
′
′
(
ξ
1
)
+
1
48
f
′
′
′
(
ξ
2
)
\dfrac 12-0=0+\dfrac{1}{48}f'''(\xi_1)+\dfrac{1}{48}f'''(\xi_2)
21−0=0+481f′′′(ξ1)+481f′′′(ξ2)
整理得
f
′
′
′
(
ξ
1
)
+
f
′
′
′
(
ξ
2
)
=
24
f'''(\xi_1)+f'''(\xi_2)=24
f′′′(ξ1)+f′′′(ξ2)=24
∵ f ′ ′ ′ ( x ) \qquad \because f'''(x) ∵f′′′(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,且 f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) = 24 f'''(\xi_1)+f'''(\xi_2)=24 f′′′(ξ1)+f′′′(ξ2)=24
∴ \qquad \therefore ∴根据连续函数的介值定理可得存在 ξ \xi ξ介于 ξ 1 \xi_1 ξ1和 ξ 2 \xi_2 ξ2之间,使得 f ′ ′ ′ ( ξ ) = 12 f'''(\xi)=12 f′′′(ξ)=12
∵ ξ 1 \qquad \because \xi_1 ∵ξ1和 ξ 2 \xi_2 ξ2都在 ( 0 , 1 ) (0,1) (0,1)上
∴ \qquad \therefore ∴存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1),使得 f ′ ′ ′ ( ξ ) = 12 f'''(\xi)=12 f′′′(ξ)=12