ARC140D One to One

ARC140D One to One

题目大意

对于一个长度为 n n n的整数序列 X = ( x 1 , x 2 , … x n ) X=(x_1,x_2,\dots x_n) X=(x1,x2,xn),每个元素都在 1 1 1 n n n之间,令 f ( X ) f(X) f(X)表示以下问题的答案:

  • 有一个 n n n个顶点 n n n条边的无向图(可能有重边和自环),第 i i i条边连接 i i i X i X_i Xi,求联通块的数量

给一个正整数 n n n和一个长度为 n n n的序列 A = ( a 1 , a 2 … a n ) A=(a_1,a_2\dots a_n) A=(a1,a2an),其每一个元素都在 1 1 1 n n n之间,或者为 − 1 -1 1

你可以将每个值为 − 1 -1 1 a i a_i ai变为任意一个 1 1 1 n n n之间的数,求所有情况下 f ( A ) f(A) f(A)的和。输出答案对 998244353 998244353 998244353取模。


题解

k k k表示 a i = − 1 a_i=-1 ai=1的元素的个数。

我们可以先将 a i ≠ − 1 a_i\neq -1 ai=1的边连上,那么现在图上的每一个连通块都是树或环或基环树。

如果是树的话,则这个连通块有且只有一个 a i = − 1 a_i=-1 ai=1的点

如果是环或基环树的话,则这个连通块没有 a i = − 1 a_i=-1 ai=1的点

我们可以先把环和基环树的贡献算出来,每个环或基环树的贡献为 n k n^k nk,因为不管怎么连,环或基环树都会有 1 1 1的贡献。那么如果有树向环或基环树连边,则这棵树不计算贡献。

树与环或基环树连边的贡献不需计算,那么我们只需要求树与树连边的贡献了。

因为每棵树只有一条边连出去,所以我们可以将每棵树看成一个点。

如果不连向环和基环树,那么这些树一定会形成一个环。对于一个顺序已确定的环,形成这样的环的方案数为 ∏ s i z i \prod siz_i sizi

我们考虑DP。设 f i f_i fi表示形成长度为 i i i的环的方案数,那么对于每个点 j j j,有转移式

f i = f i + f i − 1 × s i z k f_i=f_i+f_{i-1}\times siz_k fi=fi+fi1×sizk

求出 f f f后我们考虑如何计算答案。对于所有长度为 i i i的环的贡献为 f i × ( i − 1 ) ! × n k − i f_i\times (i-1)!\times n^{k-i} fi×(i1)!×nki。其中 ( i − 1 ) ! (i-1)! (i1)!表示 i i i个点按不同顺序可以构成 ( i − 1 ) ! (i-1)! (i1)!个不同的环, n k − i n^{k-i} nki表示其他 n − k n-k nk个点可以任意连边。

这样问题就解决了,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

code

#include<bits/stdc++.h>
using namespace std;
int n,tot=0,vt=0,a[2005],d[5005],l[5005],r[5005],s[2005],z[2005],siz[2005];
long long ans,f[2005],jc[2005],mi[2005];
long long mod=998244353;
void add(int xx,int yy){
	l[++tot]=r[xx];d[tot]=yy;r[xx]=tot;
}
void dfs(int u){
	z[u]=1;siz[u]=1;
	for(int i=r[u];i;i=l[i]){
		if(!z[d[i]]){
			dfs(d[i]);siz[u]+=siz[d[i]];
		}
	}
}
int main()
{
	scanf("%d",&n);
	jc[0]=mi[0]=1;
	for(int i=1;i<=n;i++){
		jc[i]=jc[i-1]*i%mod;
		mi[i]=mi[i-1]*n%mod;
	}
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
		if(a[i]==-1) continue;
		add(i,a[i]);add(a[i],i);
	}
	for(int i=1;i<=n;i++){
		if(a[i]==-1){
			dfs(i);s[++vt]=siz[i];
		}
	}
	for(int i=1;i<=n;i++){
		if(!z[i]){
			dfs(i);ans=(ans+mi[vt])%mod; 
		}
	}
	f[0]=1;
	for(int i=1;i<=vt;i++){
		for(int j=i;j>=1;j--) f[j]=(f[j]+f[j-1]*s[i]%mod)%mod;
	}
	for(int i=1;i<=vt;i++){
		ans=(ans+f[i]*jc[i-1]%mod*mi[vt-i]%mod)%mod;
	}
	printf("%lld",ans);
	return 0;
}
  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值