OpenCv源码解析:对HAL硬件加速层的支持

OpenCV的硬件加速层全称是OpenCV Hardware Acceleration Layer (HAL),一般来说,硬件厂商或开发人员可能会根据自己的实际情况,开发出独立于OpenCV的运算函数,以支持硬件优化,加快运算速度。这些功能性模块有可能是闭源的。为了实现顺利对接,OpenCV提供了一个简单的接口模块,当各厂家需要开发自己的运算模块时,只要实现这些接口即可。

根据【1】,OpenCV能用构建三种不同的模式

(1)无HAL支持模式。在这种情况下,默认采用OpenCv的函数实现;

(2)用静态链接的HAL。OpenCV会调用这些HAL提供的加速运算的函数。

(3)动态加载的HAL支持。OpenCV 会在运行时加载这些HAL模块,如果失败,就会调用默认的OpenCV中的函数实现。

OpenCV为CMake选项提供了 HAL_MODE, STATIC_HAL_INCLUDE_DIR 和STATIC_HAL_LIB选项,以方便用户选择使用模式和相应的HAL库。

可能因为版本的原因,目前的OpenCV3.4.1中给出的方案是采用内联函数的形式,也就是,如果厂家要实现这些运算,直接用自己的函数替换掉hal_replacement.hpp 即可,顾名思义,所以文件名叫replacement。我们可以在arithm.cpp文件中看到大量这样的语句,

void sub8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, int width, int height, void* )
{
    CALL_HAL(sub8u, cv_hal_sub8u, src1, step1, src2, step2, dst, step, width, height)
    CALL_IPP_BIN_E_21(ippiSub_8u_C1RSfs)
    (vBinOp<uchar, cv::OpSub<uchar>, IF_SIMD(VSub<uchar>)>(src1, step1, src2, step2, dst, 
        step, width, height));
}

其中CALL_HAL是一个宏定义,如下

#define CALL_HAL(name, fun, ...) \
{ \
    int res = __CV_EXPAND(fun(__VA_ARGS__)); \
    if (res == CV_HAL_ERROR_OK) \
        return; \
    else if (res != CV_HAL_ERROR_NOT_IMPLEMENTED) \
        CV_Error_(cv::Error::StsInternal, \
            ("HAL implementation " CVAUX_STR(name) " ==> " CVAUX_STR(fun) " returned %d (0x%08x)", res, res)); \
}

在运行sub8u运行时,这个宏先得到运行,此时CALL_HALL中的fun函数,就是cv_hal_sub8u,它在hal_replacement中是这样定义的,

#define cv_hal_sub8u hal_ni_sub8u
inline int hal_ni_sub8u(const uchar *src1_data, size_t src1_step, const uchar *src2_data, 
    size_t src2_step, uchar *dst_data, size_t dst_step, int width, int height) 
{ return CV_HAL_ERROR_NOT_IMPLEMENTED; }

注意当没有提供HAL的实现函数时,默认的cv_hal_sub8u的返回值是CV_HAL_ERROR_NOT_IMPLEMENTED。当然,如果有提供HAL的实现函数,根据CALL_HAL这个宏,返回值必然需要是CV_HAL_ERROR_OK。

所以,这句

if (res == CV_HAL_ERROR_OK) 
    return; 
else if (res != CV_HAL_ERROR_NOT_IMPLEMENTED) 
    CV_Error…

的意思是,如果有提供HAL的实现函数并返回CV_HAL_ERROR_OK, 就直接退出(指退出void sub8u(…)这个函数);如果没有提供HAL的实现函数,此时cv_hal_sub8u必然返回CV_HAL_ERROR_NOT_IMPLEMENTED(否则报错)。

我们看到hal_ni_sub8u返回的就是CV_HAL_ERROR_NOT_IMPLEMENTED,所以接下来,OpenCV会采用默认的

 (vBinOp<uchar, cv::OpSub<uchar>, IF_SIMD(VSub<uchar>)>(src1, step1, src2, step2, dst, step, width, height));

来执行sub8u的计算。

OpenCV就是通过这种方式,实现对HAL硬件层的支持的。

 

【1】 https://github.com/jet47/opencv-hal-proposal

<think>好的,我现在要回答用户关于libimgutils.so的问题。首先,我需要确定用户提到的这个库是什么,然后收集相关信息。 用户问的是“libimgutils.so”,看起来是一个共享库文件。根据常见的命名规则,以“lib”开头,.so结尾,这通常是Linux系统中的动态链接库。名称中的“imgutils”可能代表“image utilities”,即图像工具库。所以,这个库可能与图像处理相关。 接下来,我需要回忆一下常见的开源项目或框架中是否有类似的库。例如,Android系统中有许多以“lib”开头的系统库,可能与多媒体处理有关。或者,这可能属于某个特定的图像处理库,比如FFmpeg、OpenCV等。 首先,我应该检查Android系统库。在Android的上下文中,libimgutils.so可能属于系统的图像处理工具库,用于提供基础的图像操作功能,如格式转换、缩放、编解码支持等。Android的媒体框架中确实有一些图像处理相关的库,比如libjpeg、libpng,但名字不是imgutils。不过,可能存在其他库,需要进一步确认。 另外,FFmpeg项目中有一个utils模块,但通常不叫imgutils。不过,FFmpeg的libavutil库提供了很多实用函数,包括图像处理。但名字不匹配。可能需要查证。 另外,可能是某个特定项目或设备厂商自己开发的库,这时候公开的信息可能较少。如果是系统级的库,可能需要查看Android源代码或相关文档。 现在,我需要验证这些假设。首先,检查Android源代码。访问Android官方源代码仓库,搜索libimgutils.so是否存在。例如,在AOSP(Android Open Source Project)中搜索。 根据我的知识,Android的媒体框架中有libstagefright库,处理多媒体播放和录制,而图像处理可能有其他库。另外,在Android的相机或图形模块中可能存在相关库。 或者,libimgutils.so可能属于某个硬件抽象HAL)的一部分,用于与硬件加速的图像处理功能交互,但具体细节可能因设备而异。 如果找不到明确的Android相关文档,可能需要考虑其他可能性。例如,某些第三方库或嵌入式系统使用的库。 用户可能需要了解该库的功能、使用场景、依赖关系或常见问题。由于信息有限,可能需要给出一般性的介绍,并建议用户根据上下文进一步排查。 另外,需要注意用户是否有特定的环境,比如某个设备或系统版本,这可能影响库的具体实现。 总结:libimgutils.so可能是Android系统中的一个图像工具库,用于提供基础的图像处理功能,如格式转换、缩放、编解码支持等。它可能被系统服务或应用程序调用,但具体功能需要参考相关文档或源代码。如果用户遇到与该库相关的问题,可能需要检查日志或查阅对应系统的开发文档。 在回答时,需要保持结构清晰,分点说明可能的来源、功能、使用场景,并建议用户进一步确认环境信息。</think>关于动态库`libimgutils.so`的解析如下: ### 1. **基础定位** - **命名规则**:以`lib`开头、`.so`为后缀,符合Linux/Android系统动态链接库的命名规范。 - **名称推测**:`imgutils`是`Image Utilities`的缩写,表明其功能与**图像基础操作**相关。 --- ### 2. **典型应用场景** #### ▶ Android系统 - **归属模块**:可能属于Android多媒体框架(如`libstagefright`)或图形子系统。 - **功能范围**: - 图像格式转换(如YUV ↔ RGB) - 色彩空间处理 - 图像缩放/旋转 - 编解码辅助操作(如DCT变换、量化) - **调用方**:系统服务(如`SurfaceFlinger`、`MediaServer`)或相机HAL。 #### ▶ 第三方库 - **可能项目**:若与Android无关,可能属于: - **FFmpeg**:`libavutil`的子模块(但命名不同) - **OpenCV**:基础图像工具库(通常以`libopencv_`开头) - **嵌入式设备厂商**:定制化图像处理库 --- ### 3. **功能验证途径** - **Android源码分析**: 1. 访问[AOSP仓库](https://android.googlesource.com/) 2. 搜索`libimgutils`相关模块(如`system/core/libimgutils`) 3. 查看`Android.bp`/`Android.mk`编译文件确认依赖关系 - **符号表检查**: ```bash nm -D libimgutils.so | grep " T " # 列出导出函数 ``` 典型输出可能包含`image_convert()`, `rescale_image()`等函数。 --- ### 4. **常见问题与调试** - **依赖缺失**: ```bash ldd libimgutils.so # 检查未解析的符号 ``` - **版本冲突**: - 错误提示:`undefined symbol: image_processing_v2` - 解决方法:确认调用方与库版本兼容性 - **性能问题**: - 使用`perf`或`simpleperf`分析图像处理函数的CPU占用 --- ### 5. **开发建议** - **头文件定位**:若需调用该库,需从源码中获取配套的`img_utils.h`等头文件。 - **替代方案**:若文档缺失,可考虑改用开源库(如`libyuv`处理YUV格式)。 建议结合具体系统环境(如Android版本)及错误日志进一步分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值