学会区分 RNN 的 output 和 state

73 篇文章 0 订阅
19 篇文章 0 订阅

若干年后,看到了pytorch对RNN的抽象,非常优雅,见这个正余弦预测code的注释:

"""
View more, visit my tutorial page: https://mofanpy.com/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou

Dependencies:
torch: 0.4
matplotlib
numpy
"""
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

# Hyper Parameters
TIME_STEP = 10      # rnn time step
INPUT_SIZE = 1      # rnn input size
LR = 0.02           # learning rate

# show data
steps = np.linspace(0, np.pi*2, 100, dtype=np.float32)  # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show()


class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()

        self.rnn = nn.RNN(
            input_size=INPUT_SIZE,
            hidden_size=32,     # rnn hidden unit
            num_layers=1,       # number of rnn layer
            batch_first=True,   # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
        )
        self.out = nn.Linear(32, 1)

    def forward(self, x, h_state):

        # x (batch, time_step, input_size)
        # h_state (n_layers, batch, hidden_size)
        # r_out (batch, time_step, hidden_size)
        r_out, h_state = self.rnn(x, h_state)
        # self.rnn实际上本身就是有n_layers*time_step个网状RNN单元:n_layers是向上堆叠的,time_step是时间维度堆叠的,也就是先后顺序
        # batch是batch_size,把训练数据分成若干批,每批有多大
        # input_size是某个timestamp输入有多少维:这个例子是正余弦预测例子是1维;如果把一行像素当成输入,维度就是这行像素的个数
        # hidden_size就是RNN内部会当成多少维。所有神经网络都是输入维度input_size->内部维度->output_size

        #下面这一大堆实际上只是先把hidden_size维弄成1维,因为最终预测是1维的,来了3种方法:

        # outs = []    # save all predictions
        # for time_step in range(r_out.size(1)):    # 每个time_step分别过FeedForward
        #     outs.append(self.out(r_out[:, time_step, :]))
        # return torch.stack(outs, dim=1), h_state

        # 第二种方法,先把r_out (batch, time_step, hidden_size)弄成(-1, hidden_size)的二维tensor,过FeedForward,再reshape回来
        # instead, for simplicity, you can replace above codes by follows
        r_out = r_out.view(-1, 32)
        print('r_out.view(-1, 32) shape={}'.format(r_out.shape))
        outs = self.out(r_out)
        outs = outs.view(-1, TIME_STEP, 1)
        return outs, h_state

        # 第三种方法,全连接在Pytorch里只关心in_features有多少维->out_features有多少维就行了
        # 如果print RNN这个instance就会发现,RNN网络结构实际上只关心in_features有多少维->out_features有多少维,self.out关心这件事情就够了
        # or even simpler, since nn.Linear can accept inputs of any dimension 
        # and returns outputs with same dimension except for the last
        # outs = self.out(r_out)
        # return outs, h_state

rnn = RNN()
print(rnn)

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # optimize all cnn parameters
loss_func = nn.MSELoss()

h_state = None      # for initial hidden state

plt.figure(1, figsize=(12, 5))
plt.ion()           # continuously plot

for step in range(100):
    start, end = step * np.pi, (step+1)*np.pi   # time range
    # use sin predicts cos
    steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False)  # float32 for converting torch FloatTensor
    x_np = np.sin(steps)
    y_np = np.cos(steps)

    x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])    # shape (batch, time_step, input_size)
    y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])

    prediction, h_state = rnn(x, h_state)   # rnn output
    # !! next step is important !!
    h_state = h_state.data        # repack the hidden state, break the connection from last iteration
    print('prediction.shape={}'.format(prediction.shape))

    loss = loss_func(prediction, y)         # calculate loss
    optimizer.zero_grad()                   # clear gradients for this training step
    loss.backward()                         # backpropagation, compute gradients
    optimizer.step()                        # apply gradients

    # plotting
    plt.plot(steps, y_np.flatten(), 'r-')
    plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
    plt.draw(); plt.pause(0.05)

plt.ioff()
plt.show()

​​​​​​​

写这篇文章的起因是,有人问调用 outputs, last_state = tf.nn.static_rnn(cell,inputs) 之后,last_state 和outputs[-1] 相等吗?如果不想等,为什么会不等呢?

 

其实这也是学习 RNN 的一大难点。我个人认为,学习RNN 最难的地方就是弄明白它的输入和输出是什么。一个简单的回答是,对于一个 RNN 单元,它每次接受一个当前输入 x_t 和前一步的隐层状态 s_{t-1},然后产生一个新的隐层状态 s_t,也即:s_t = f(x_t,s_{t-1}),其中 f 代表某个函数,对应于 RNN 内部的运算过程。

这种说法并没有错,但是不够好,因为很多时候,把 RNN 的输出和状态区分开来,理解起来会更加顺畅。也就是说,我们认为RNN 是这样一个单元:y_t, s_t = f(x_t, s_{t-1}) ,画成图的话,就是这样:

 

 

这也是本文所要强调的地方:务必要区分 RNN 的输出和状态。这么做有什么用呢?先看

先看一个最基本的例子,考虑 Vanilla RNN/GRU Cell(vanillaRNN 就是最普通的 RNN,对应于 TensorFlow 里的 BasicRNNCell),工作过程如下:

 

这时,s_t = y_t = h_t,区分这俩确实没用。

 

但是!如果是 LSTM 呢?对于 LSTM,它的循环部件其实有两部分,一个是内部 cell 的值,另一个是根据cell 和 output gate 计算出的 hiddenstate,输出层只利用 hidden state 的信息,而不直接利用cell。这样一来,LSTM 的工作过程就是:

其中真正用于循环的状态 s_t 其实是 (c_t, h_t) 组成的 tuple(就是 TensorFlow 里的 LSTMStateTuple,当然,如果你选择不用 tuple 表示 LSTM 的内部状态,也可以把 c_t 和 h_t 拼起来,合起来拼成一个 Tensor,这样的话它的状态就是一个 Tensor 了,这时做别的计算可能会方便一些,这个其实就是TensorFlow 里的 state_is_tuple 这个开关。),而输出y_t 仅仅是 h_t(例如网络后面再接一个全连接层然后用softmax 做分类,这个全连接层的输入仅仅是 h_t,而没有c_t),这时就可以看到区分 RNN 的输出和状态的意义了。

当然,这种抽象的意义不止于此。如果是一个多层的 Vanilla RNN/GRU Cell,那么一种简单的抽象办法就是,把多层Cell 当成一个整体,当成一层大的 Cell,然后原先各层之间的关系都当成这个大的Cell 的内部计算过程/数据流动过程,这样对外而言,多层的RNN 和单层的 RNN 接口就是一模一样的:在外部看来,多层RNN 只是一个内部计算更复杂的单层 RNN。图示如下:

 

大方框表示把多层 RNN 整体视为一层大的 Cell,而里面的小方框则对应于原先的每一层 RNN。这时,如果把大方框视为一个整体,那么这个整体进行循环所需要的状态就是各层的状态组成的集合,或者说把各层的状态放在一起组成一个tuple:(这里为什么要用 tuple 呢?直接把它们拼成一个 Tensor 不行吗,tuple 还得一个一个遍历,这多麻烦?答案是,不行。因为多层RNN 并不需要每一层都一样大,例如有可能最底层维度比较高,隐层单元数较大,越往上则隐层维度越小。这样一来,每一层的状态维度都不一样,没法concat 成一个 Tensor 啊!);而这个大的 RNN单元的输出则只有原先的最上层 RNN 的输出,即整体的  。

在这个例子里,大 RNN 单元的输出和状态显然不一样。在这种视角下,多层RNN 和单层 RNN 可以用一个统一的视角来看待,世界清爽了许多。事实上,在TensorFlow 里,MultiRNNCell 就是RNNCell 的一个子类,它把多层的 RNN 当成一个整体、当成一个内部结构更复杂的单层RNN 来看待。我在文章最开始提到的代表 RNN 内部计算的函数f,其实就是 RNNCell 的 __call__ 方法。

 

再来看最后一个例子,多层 LSTM:

 

 

和之前的例子类似,把多层 LSTM 看成一个整体,这个整体的输出就是最上层LSTM 的输出:  ;而这个整体进行循环所依赖的状态则是每一层状态组合成的tuple,而每一层状态本身又是一个 (c, h) tuple,所以最后结果就是一个tuple 的 tuple,如图所示。

 

这样一来,便可以回答两个问题:

其一是,outputs, last_state = tf.nn.static_rnn(cell,inputs) 之后,last_state 和outputs[-1] 相等吗?

outputs 是 RNN Cell 的 output 组成的列表,假设一共有 T 个时间步,那么 outputs = [y_1, y_2, ..., y_T],因此outputs[-1] = y_T;而 last_state 则是最后一步的隐层状态,即s_T。

那么,到底 outputs[-1] 等不等于last_state 呢?或者说 y_T 等不等于 s_T 呢?看一下上面四个图就可以知道,当且仅当使用单层 Vanilla RNN/GRU 的时候,他们才相等。

 

其二是,LSTM 作为一个 state 和 output 不一样的奇葩,导致我们经常需要操作那个 (c, h)tuple,或者在 tuple 和 Tensor 之间转换。有一段很常用的转换代码是这样的:

lstm_state_as_tensor_shape = [num_layers,2, batch_size, hidden_size]

initial_state = tf.zeros(lstm_state_as_tensor_shape)

unstack_state = tf.unstack(initial_state,axis=0)

tuple_state = tuple([tf.contrib.rnn.LSTMStateTuple(unstack_state[idx][0], unstack_state[idx][1]) foridx in range(num_layers)])

inputs = tf.unstack(inputs, num=num_steps,axis=1)

outputs, state_out = tf.contrib.rnn.static_rnn(cell,inputs, initial_state=tuple_state)

对着上面最后一张多层 LSTM 的图琢磨琢磨,就知道这几行代码到底是如何把Tensor 转换成多层 LSTM 的状态的了。

From: https://zhuanlan.zhihu.com/p/28919765

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值