2020年,关于事件相机(event camera)的最新研究论文总结

本文仅用于学习过程中的一些总结记录。2020年发表的关于事件相机在一些领域的总结。

1. 运动估计 Motion Estimation

有不少关于运动估计的论文,基本是围绕之前最大化事件积累图对比度的方式进行。

最小化Entropy

[1] 采用最小化熵函数的方式,对运动参数进行估计。文章指出最大的优点是,这种方法不需要将空间中的事件投影到平面上去最大化对比度。然而数学内容太复杂真的看不懂。
在这里插入图片描述

全局最优解计算

[2] [3] 两篇论文,都是解决运动参数估计时陷入局部最优解的问题。如果在使用最大对比度函数进行计算运动参数时,需要有一个较好的参数初值,否则对于图像问题在优化时会陷入局部最优解。如下图所示,左下角的运动参数就是局部最优解。
在这里插入图片描述论文采用了分支定界(Branch-and-bound)的方法进行全局搜索,提出了某个区域的近似上界和下界,加速运算。

运动参数时间连续性

[4] 这篇论文提出,相机的运动应该是连续的,之前的方法只是针对每个积累图进行一次优化得到运动参数,并没有考虑与前后时刻的运动参数是否一致。

论文将一段儿时间内的运动参数设置为时变的,但这样难以优化,所以不得不再次切片成多个更短的时间离散化,分别优化运动参数。同时增加一阶导数作为惩罚项避免过拟合,保证参数变化的连续性。如下图,待优化的运动参数是时变的 θ t \theta_t θt,最后一项是参数的一阶导。

在这里插入图片描述
这个想法让人眼前一亮,从实验结果上看,增加噪声以后,考虑了时间上的连续性情况下的运动曲线更加平滑。
在这里插入图片描述

2. 建图、场景识别与VIO

Frame+event的深度估计

[5] 使用了事件相机+传统相机进行深度估计。作者指出这是第一个关于二者融合的深度估计,二者结合得到了时间上连续的稠密深度图。

在这里插入图片描述方法架构如上图。stereo相机数据过来以后进行稠密重建,然后根据运动参数推测和收到的events在两帧图像之间对depth图进行更新。由于利用到了视差的信息,论文提到这种方法更适合于平行于平面运动,但仍然不失为一种不错的尝试。毕竟这种方法补全了两帧之间的深度图,还是挺有趣的。
在这里插入图片描述

基于事件的场景识别

[6] 是我读到的第一个event-based的场景识别的论文。时空窗口的选择方式常见的有定事件数量或定时间,但无论如何事件只归属于一个窗口。而这篇论文采用了多种尺度的时间窗口,一个事件同时隶属于多个窗口。然后通过已有的E2VID方法恢复到图像,再进行匹配。
在这里插入图片描述如上图的流程所示,第一个图示意某一个时刻某一个事件可能同时归属于6个窗口(3种时间间隔、3种数量上限),之后所有的窗格恢复images,再分别提取特征,与之前关键位置的images进行比对,形成Ensemble matrix。最近的那个就是成功匹配。这种方法给出了一些近似方法,降低了比对的复杂度。这个方法还是比较有趣的,虽然感觉有点儿暴力。

利用线特征的VIO

[7] 这篇论文提出了一个IMU+DVS的VIO。大致看了一下主要是优化的点到线距离。

4. 信号处理领域相关研究

降噪
2020降噪的研究有不少在我之前的一篇博客中有所总结:【事件相机整理】信号处理、噪声与滤波。这里就不展开介绍。

数据编码与压缩
之前没有注意,最近发现在github的event camera的汇总中出现了“Compression”相关的研究,以为是2020年才开始的,结果打开论文发现,[10][11]中已经指出了不少的研究。想简单看一看发现实在是太深入了,之前研究传统图像编码与压缩的方法,大量的用在event上面。真的是新的应用场景又养活了一批人。

在这里插入图片描述
压缩与编码目的:降低数据量,总线传输更快,降低存储空间,IoT领域降低传输数据量
数据编码与压缩的主要衡量指标:压缩率、编解码速度、编解码延时
方法比较的结果:压缩率:LZMA(静态),Spike(动态); 编解码速度:LZ4和Snappy;综合性能:Brotli算法

在这里插入图片描述

5. 图像/视频恢复 Reconstruction

我对重建部分了解不多。传统方法是基于一些假设前提,例如亮度一致性,或利用泊松积分等方式进行恢复。现在更多地采用learning的方法。

包含了超分辨率与降噪的重建

[12] 这篇工作,采用事件对图像进行增强,得到了降噪、超分的图像。多说一句,event的超分工作也很少,这篇论文的作者表示只遇到了一篇相关论文。这篇论文的视频上传到了bilibili,可以看一看。干杯~https://www.bilibili.com/video/av838383543/

E2VID 视频恢复

E2VID基本可以算是最常对比的一种方法了,也衍生了许多改进方案。[9] 这篇论文是rpg组Henri Rebecq的工作,好像是在18年基础上的改进,并公开了代码。event数据流直接通过learning后转成视频。看着效果还是不错的,应该比之前基于泊松的一些重建要方便许多。
在这里插入图片描述

基于光度一致性的自监督重建

E2VID的采用了仿真生成了带有标签的数据进行的训练,[13] 这工作不需要真值,直接自监督。思路如下图,利用FlowNet和ReconNet两个网络生成的数据,和事件积累图采用光度一致性,确定误差,反向传播到两个网络进行调整。

在这里插入图片描述

基于cycle-GAN的重建

[14] 采用cycle-GAN进行重建。对GAN我也不懂,说到这些又想到了伤心的过去。算了不说了。

基于representation learning 和 domain adaption的learning

这个也是好新的内容啊,完全不懂。大概理解,[15] 的主要解决的问题是,在黑暗环境下的重建可以利用光照条件良好的数据进行学习,经过domin adaption把光照良好的一些domain-invariant representations迁移到光照不好的情况下。

二维码重建与识别

终于碰到了一个自己熟悉的工作。[16] 这篇论文研究了将高速运动的QR码恢复后解码。主要有两步:由定位图案大致确定运动参数,之后优化目标函数使运动参数、仿射变换与重建的误差最小。

在这里插入图片描述
创新点之处是,并没有直接在原图像尺寸恢复二维码,而是通过了一个仿射变换,将原尺寸的二维码降采样到25x25的平面,从而极大程度的降低了参数的维度。所优化的目标函数如下所示,让事件经过运动参数warp后与图像尽可能相同。
在这里插入图片描述然而我实际做过二维码识别解码的相关工作,认为这篇论文还有许多地方没有说清楚。例如用PCA确定运动参数时,定位模块的pattern具有噪声不知道是怎么找的;时间长度如何选取最合适等这些都没有研究。

同时我又有了一个大胆的想法。event的二维码工作这是我看到的第一篇,只停留在相机固定二维码单方向运动,没有背景干扰,速度恒定,QR码。如果是相机运动、地面有干扰、6dof、不匀速、datamatrxi/QR多种码,等,能够搞出来一大票的工作。


n. 其他暂未分类

基于SNN的角速度估计

[8] 这篇论文采用SNN对3DoF的角速度进行估计。在此之前,SNN基本只用与做Event的分类问题,而没有做过回归(角速度估计是回归问题)。这篇论文表示做回归问题也是可行的,同时比其他ANN的方法要好。
在这里插入图片描述


未完待续

有时间继续补充,未完待续……


参考文献

[1]. Urbano Miguel Nunes: Entropy Minimisation Framework for Event-based Vision Model Estimation.

[2]. Xin Peng: Globally-Optimal Event Camera Motion Estimation.

[3]. Liu, Daqi; Parra, Álvaro; Chin, Tat-Jun (2020): Globally Optimal Contrast Maximisation for Event-based Motion Estimation. Available online at http://arxiv.org/pdf/2002.10686v3.

[4]. Xu, Jie; Jiang, Meng; Yu, Lei; Yang, Wen; Wang, Wenwei (2020): Robust Motion Compensation for Event Cameras With Smooth Constraint. In IEEE Trans. Comput. Imaging 6, pp. 604–614. DOI: 10.1109/TCI.2020.2964255.

[5]. Antea Hadviger: Stereo Dense Depth Tracking Based on Optical Flow using Frames and Events.

[6]. Fischer, Tobias; Milford, Michael (2020): Event-Based Visual Place Recognition With Ensembles of Temporal Windows. In IEEE Robot. Autom. Lett. 5 (4), pp. 6924–6931. DOI: 10.1109/LRA.2020.3025505.

[7]. Le Gentil, Cedric; Tschopp, Florian; Alzugaray, Ignacio; Vidal-Calleja, Teresa; Siegwart, Roland; Nieto, Juan (2020): IDOL: A Framework for IMU-DVS Odometry using Lines. Available online at http://arxiv.org/pdf/2008.05749v1.

[8]. Gehrig, Mathias; Shrestha, Sumit Bam; Mouritzen, Daniel; Scaramuzza, Davide: Event-Based Angular Velocity Regression with Spiking Networks. In IEEE International Conference on Robotics and Automation (ICRA). Available online at http://arxiv.org/pdf/2003.02790v1.

[9]. Rebecq, Henri; Ranftl, Rene; Koltun, Vladlen; Scaramuzza, Davide (2019): High Speed and High Dynamic Range Video with an Event Camera. In IEEE transactions on pattern analysis and machine intelligence PP. DOI: 10.1109/TPAMI.2019.2963386.

[10]. Khan, Nabeel; Iqbal, Khurram; Martini, Maria G. (2020): Lossless Compression of Data From Static and Mobile Dynamic Vision Sensors-Performance and Trade-Offs. In IEEE Access 8, pp. 103149–103163. DOI: 10.1109/ACCESS.2020.2996661.

[11]. Banerjee, Srutarshi; Wang, Zihao W.; Chopp, Henry H.; Cossairt, Oliver; Katsaggelos, Aggelos (2020): Quadtree Driven Lossy Event Compression. Available online at http://arxiv.org/pdf/2005.00974v1.

[12]. Bishan Wang∗: Event Enhanced High-Quality Image Recovery.

[13]. Paredes-Vallés, F.; Croon, G. C. H. E. de (2020): Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy. Available online at http://arxiv.org/pdf/2009.08283v1.

[14]. Binyi Su (2019): Event-based High Frame-rate Video Reconstruction with a Novel Cycle-event Network. Available online at http://arxiv.org/pdf/1906.07165v1.

[15]. Song Zhang: Learning to See in the Dark with Events.

[16]. Jun Nagata; Yusuke Sekikawa; Kosuke Hara; Teppei Suzuki; Yoshimitsu Aoki: QR-code Reconstruction from Event Data via Optimization in Code Subspace.

  • 7
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值