论文浅尝 | KAM-CoT: 利用知识图谱进行知识增强的多模态链式推理(AAAI2024)

6639fb879e42843231aaaf85570ed986.png

笔记整理:沈小力,东南大学硕士,研究方向为多模态大预言模型、知识图谱

论文链接:https://arxiv.org/abs/2401.12863

发表会议:AAAI2024

1. 动机

本文探索了知识图谱在扩展大语言模型的多模态能力的效果,提出了KAM-CoT框架。将CoT(Chain-of-Thought)推理、知识图谱(KGs)以及多种模态融入大语言模型,以促进对多模态任务的综合理解。在多模态视觉问答(VQA)任务上,该框架在较少的训练参数下达到了当前的SOTA效果。

KAM-CoT框架旨在应对多模态理解和幻觉问题的挑战,并力图用较低的可训练参数数量(280M)实现能与更大模型相比的高性能。KAM-CoT创新性地将知识图谱和CoT推理相结合:通过在推理过程中引入外部知识,提高了模型对复杂问题的解决能力和答案的质量。

6655f81f0def4e5145c24015b0dd2631.png

如上图所示,该图展示了一个视觉问答任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值