坐标系与坐标旋转

坐标系变换 or 坐标变换

一、旋转矩阵C的上下标

在此先提出一个问题, C b n 都知道是 n 系和 b 系间的旋转变换矩阵,但其变换关系到底是什么 ( n − > b ∣ b − > n ) ? 在严恭敏老师的《捷联惯导与组合导航原理》书中表示 C b n 表示 n 系到 b 系的坐标系变化矩阵,也是 b 系到 n 系坐标变化矩阵 那么 n 系到 b 系坐标系变变化矩阵 C b n 和 n 系到 b 系坐标变化矩阵 C n b 间又有什么关系呢? 从符号和矩阵关系可看出 C b n = C n b T 在此先提出一个问题,C_b^n 都知道是n系和b系间的旋转变换矩阵,但其变换关系到底是什么(n->b|b->n)?\\在严恭敏老师的《捷联惯导与组合导航原理》书中表示C_b^n表示n系到b系的坐标系变化矩阵,也是b系到n系坐标变化矩阵\\ 那么n系到b系坐标系变变化矩阵C_b^n和n系到b系坐标变化矩阵C^b_n间又有什么关系呢?\\从符号和矩阵关系可看出 C_b^n = {C^b_n}^T 在此先提出一个问题,Cbn都知道是n系和b系间的旋转变换矩阵,但其变换关系到底是什么(n>bb>n)在严恭敏老师的《捷联惯导与组合导航原理》书中表示Cbn表示n系到b系的坐标系变化矩阵,也是b系到n系坐标变化矩阵那么n系到b系坐标系变变化矩阵Cbnn系到b系坐标变化矩阵Cnb间又有什么关系呢?从符号和矩阵关系可看出Cbn=CnbT

二、坐标系定轴旋转

下面是坐标系绕各轴旋转 θ 角的旋转变换矩阵 R x ( θ ) = [ 1 0 0 0 c o s ( θ ) s i n ( θ ) 0 − s i n ( θ ) c o s ( θ ) ] R y ( θ ) = [ c o s ( θ ) 0 − s i n ( θ ) 0 1 0 s i n ( θ ) 0 c o s ( θ ) ] R z ( θ ) = [ c o s ( θ ) s i n ( θ ) 0 − s i n ( θ ) c o s ( θ ) 0 0 0 1 ] P S : θ 角正负取决于所扰旋转轴的旋转方向是否对应右手螺旋定则 以 A 坐标系变换到 B 坐标系的旋转变换矩阵为例,假设 A 系绕 z 轴旋转 ϕ , y 轴旋转 φ , x 轴旋转 θ 后变成 B 系,可写为: R x ( θ ) R y ( φ ) R z ( ϕ ) A = B C B A = R x ( θ ) R y ( φ ) R z ( ϕ ) 考虑 C B A C A B = E , 上式左右两边右乘 C A B ,得 : A = C A B B 下面是坐标系绕各轴旋转\theta角的旋转变换矩阵\\R_x(\theta) = \begin{bmatrix} 1 & 0&0\\ 0 &cos(\theta) &sin(\theta) \\ 0 &-sin(\theta) &cos(\theta)\end{bmatrix}\\ R_y(\theta) = \begin{bmatrix} cos(\theta) & 0&-sin(\theta)\\ 0 &1 &0 \\ sin(\theta) &0 &cos(\theta)\end{bmatrix}\\ R_z(\theta) = \begin{bmatrix} cos(\theta) &sin(\theta)&0\\ -sin(\theta) &cos(\theta) &0\\ 0 & 0 &1\end{bmatrix}\\ PS:\theta角正负取决于所扰旋转轴的旋转方向是否对应右手螺旋定则\\ 以A坐标系变换到B坐标系的旋转变换矩阵为例,假设A系绕z轴旋转\phi,y轴旋转\varphi,x轴旋转\theta 后变成B系,可写为:\\ R_x(\theta)R_y(\varphi)R_z(\phi)A = B\\ C^A_B = R_x(\theta)R_y(\varphi)R_z(\phi)\\ 考虑C^A_BC_A^B = E, 上式左右两边右乘C_A^B,得:\\ A = C_A^B B \\ 下面是坐标系绕各轴旋转θ角的旋转变换矩阵Rx(θ)= 1000cos(θ)sin(θ)0sin(θ)cos(θ) Ry(θ)= cos(θ)0sin(θ)010sin(θ)0cos(θ) Rz(θ)= cos(θ)sin(θ)0sin(θ)cos(θ)0001 PS:θ角正负取决于所扰旋转轴的旋转方向是否对应右手螺旋定则A坐标系变换到B坐标系的旋转变换矩阵为例,假设A系绕z轴旋转ϕ,y轴旋转φ,x轴旋转θ后变成B系,可写为:Rx(θ)Ry(φ)Rz(ϕ)A=BCBA=Rx(θ)Ry(φ)Rz(ϕ)考虑CBACAB=E,上式左右两边右乘CAB,得:A=CABB

三、坐标旋转矩阵

第二节介绍了坐标系旋转矩阵,根据第一节的结论和第二节的公式: C B A = R x ( θ ) R y ( φ ) R z ( ϕ ) 为 A 系到 B 系的坐标系旋转矩阵,那么 A 系到 B 系的坐标旋转矩阵 : C A B = C B A T = R z ( ϕ ) T R y ( φ ) T R x ( θ ) T 故可推出坐标点绕各轴旋转 θ 角的旋转变换矩阵 R x ′ ( θ ) , R y ′ ( θ ) , R z ′ ( θ ) : R x ′ ( θ ) = R x ( θ ) T = [ 1 0 0 0 c o s ( θ ) − s i n ( θ ) 0 s i n ( θ ) c o s ( θ ) ] R y ′ ( θ ) = R y ( θ ) T = [ c o s ( θ ) 0 s i n ( θ ) 0 1 0 − s i n ( θ ) 0 c o s ( θ ) ] R z ′ ( θ ) = R z ( θ ) T = [ c o s ( θ ) − s i n ( θ ) 0 s i n ( θ ) c o s ( θ ) 0 0 0 1 ] 根据 C A B 的含义: A 系到 B 系的坐标变换 = B 系到 A 系的坐标系变换,绕 A 系旋转 θ 角与 B 系重合,则 B 系旋转 − θ 角则与 A 系重合,故 : R x ′ ( θ ) = R x ( − θ ) = R x ( θ ) T R y ′ ( θ ) = R y ( − θ ) = R y ( θ ) T R z ′ ( θ ) = R z ( − θ ) = R z ( θ ) T 第二节介绍了坐标系旋转矩阵,根据第一节的结论和第二节的公式:\\ C^A_B = R_x(\theta)R_y(\varphi)R_z(\phi) 为A系到B系的坐标系旋转矩阵,那么A系到B系的坐标旋转矩阵:\\ C_A^B = {C^A_B}^T = {R_z(\phi)}^T{R_y(\varphi)}^T{R_x(\theta)^T} \\ 故可推出坐标点绕各轴旋转\theta角的旋转变换矩阵R'_x(\theta),R'_y(\theta),R'_z(\theta):\\ R'_x(\theta) = R_x(\theta)^T = \begin{bmatrix} 1 & 0&0\\ 0 &cos(\theta) &-sin(\theta) \\ 0 &sin(\theta) &cos(\theta)\end{bmatrix}\\ R'_y(\theta) = R_y(\theta)^T = \begin{bmatrix} cos(\theta) & 0&sin(\theta)\\ 0 &1 &0 \\ -sin(\theta) &0 &cos(\theta)\end{bmatrix}\\ R'_z(\theta) = R_z(\theta)^T = \begin{bmatrix} cos(\theta) &-sin(\theta)&0\\ sin(\theta) &cos(\theta) &0\\ 0 & 0 &1\end{bmatrix}\\ 根据C^B_A的含义:A系到B系的坐标变换 = B系到A系的坐标系变换,绕A系旋转\theta角与B系重合,则B系旋转-\theta角则与A系重合,故:\\ R'_x(\theta) = R_x(-\theta) = R_x(\theta)^T\\ R'_y(\theta) = R_y(-\theta) = R_y(\theta)^T\\ R'_z(\theta) = R_z(-\theta) = R_z(\theta)^T\\ 第二节介绍了坐标系旋转矩阵,根据第一节的结论和第二节的公式:CBA=Rx(θ)Ry(φ)Rz(ϕ)A系到B系的坐标系旋转矩阵,那么A系到B系的坐标旋转矩阵:CAB=CBAT=Rz(ϕ)TRy(φ)TRx(θ)T故可推出坐标点绕各轴旋转θ角的旋转变换矩阵Rx(θ),Ry(θ),Rz(θ)Rx(θ)=Rx(θ)T= 1000cos(θ)sin(θ)0sin(θ)cos(θ) Ry(θ)=Ry(θ)T= cos(θ)0sin(θ)010sin(θ)0cos(θ) Rz(θ)=Rz(θ)T= cos(θ)sin(θ)0sin(θ)cos(θ)0001 根据CAB的含义:A系到B系的坐标变换=B系到A系的坐标系变换,绕A系旋转θ角与B系重合,则B系旋转θ角则与A系重合,故:Rx(θ)=Rx(θ)=Rx(θ)TRy(θ)=Ry(θ)=Ry(θ)TRz(θ)=Rz(θ)=Rz(θ)T

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值