函数与导函数的结式的特殊性质定理

【定理】

A ( x ) = ∑ i = 0 n a i x i ∈ R [ x ] A(x) = \sum_{i = 0}^{n}{a_{i}x^{i}}\mathcal{\in R}\lbrack x\rbrack A(x)=i=0naixiR[x]

这里 n = deg ⁡ ( A , x ) n = \deg(A,x) n=deg(A,x),而 R \mathcal{R} R为一个代数闭域。设 α i ( i = 1 , … , n ) \alpha_{i}(i = 1,\ldots,n) αi(i=1,,n)别是 A A A代数闭域上的零点,设 A ′ ( x ) A^{'}(x) A(x) A ( x ) A(x) A(x)的导函数,那么有恒等式:

r e s ( A , A ′ , x ) = ( − 1 ) n ( n − 1 ) 2 a n 2 n − 1 ∏ 1 ≤ j < i ≤ n ( α i − α j ) 2 res\left( A,A^{'},x \right) = ( - 1)^{\frac{n(n - 1)}{2}}a_{n}^{2n - 1}\prod_{1 \leq j < i \leq n}^{}\left( \alpha_{i} - \alpha_{j} \right)^{2} res(A,A,x)=(1)2n(n1)an2n11j<in(αiαj)2

【证明】

因为

A ( x ) = a n ∏ i = 1 n ( x − α i ) A(x) = a_{n}\prod_{i = 1}^{n}\left( x - \alpha_{i} \right) A(x)=ani=1n(xαi)

所以

A ′ ( x ) = a n ∑ i = 1 n ∏ j = 1 j ≠ i n ( x − α j ) A^{'}(x) = a_{n}\sum_{i = 1}^{n}{\prod_{\begin{array}{r} j = 1 \\ j \neq i \end{array}}^{n}\left( x - \alpha_{j} \right)} A(x)=ani=1nj=1j=in(xαj)

又因为

r e s ( A , B , x ) = a m n ∏ i = 1 m B ( α i ) res(A,B,x) = a_{m}^{n}\prod_{i = 1}^{m}{B\left( \alpha_{i} \right)} res(A,B,x)=amni=1mB(αi)

这里 m = deg ⁡ ( A , x ) 、 n = deg ⁡ ( B , x ) m = \deg(A,x)、n = \deg(B,x) m=deg(A,x)n=deg(B,x)

从而

r e s ( A , A ′ , x ) res\left( A,A^{'},x \right) res(A,A,x)

= a n n ∏ i = 1 n A ′ ( α i ) = a_{n}^{n}\prod_{i = 1}^{n}{A^{'}\left( \alpha_{i} \right)} =anni=1nA(αi)

= a n n a n n − 1 ∏ i = 1 n ∑ k = 1 n ∏ j = 1 j ≠ k n ( α i − α j ) = a n n a n n − 1 ∏ i = 1 n ∏ j = 1 j ≠ i n ( α i − α j ) ① \begin{array}{r} = a_{n}^{n}a_{n}^{n - 1}\prod_{i = 1}^{n}{\sum_{k = 1}^{n}{\prod_{\begin{array}{r} j = 1 \\ j \neq k \end{array}}^{n}\left( \alpha_{i} - \alpha_{j} \right)}} = a_{n}^{n}a_{n}^{n - 1}\prod_{i = 1}^{n}{\prod_{\begin{array}{r} j = 1 \\ j \neq i \end{array}}^{n}\left( \alpha_{i} - \alpha_{j} \right)} ① \end{array} =annann1i=1nk=1nj=1j=kn(αiαj)=annann1i=1nj=1j=in(αiαj)

= ( − 1 ) n ( n − 1 ) 2 a n 2 n − 1 ∏ 1 ≤ j < i ≤ n ( α i − α j ) 2 ② \begin{array}{r} = ( - 1)^{\frac{n(n - 1)}{2}}a_{n}^{2n - 1}\prod_{1 \leq j < i \leq n}^{}\left( \alpha_{i} - \alpha_{j} \right)^{2}② \end{array} =(1)2n(n1)an2n11j<in(αiαj)2

注意:

前面的 ① ① 等号是因为只有当 k = i k = i k=i时,才有

∏ j = 1 j ≠ k n ( α i − α j ) ≠ 0 \prod_{\begin{array}{r} j = 1 \\ j \neq k \end{array}}^{n}\left( \alpha_{i} - \alpha_{j} \right) \neq 0 j=1j=kn(αiαj)=0

后面的 ② ② 等号成立是因为有序对 ( i , j ) (i,j) (i,j) i > j i > j i>j)的个数恰好为 ( n 2 ) = n ( n − 1 ) 2 \binom{n}{2} = \frac{n(n - 1)}{2} (2n)=2n(n1),而一个有序对 ( i , j ) (i,j) (i,j)对应一个有序对 ( j , i ) (j,i) (j,i),所有 ( α j − α i ) \left( \alpha_{j} - \alpha_{i} \right) (αjαi)需要调整符号的次数恰好为 n ( n − 1 ) 2 \frac{n(n - 1)}{2} 2n(n1)

  • 10
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值