一文读懂英伟达的核心和显卡产品线规格-附全部显卡核心对应关系图表

英伟达(NVIDIA)是全球领先的人工智能计算公司和GPU制造商。其显卡产品线涵盖了从入门级到专业级、游戏级和数据中心级的各种需求。要理解英伟达显卡的核心和产品线规格,首先需要了解英伟达的GPU核心架构,然后再深入研究各个产品系列的规格和性能特点。

1-显卡的核心要素     

英伟达(NVIDIA)的GPU核心与显卡的对应关系可以从多个角度来理解,包括GPU的架构、性能、用途等。

GPU和显卡的关系:GPU(Graphic Processing Unit,图形处理单元)是显卡的核心部件,负责处理图形和图像数据。显卡是包含GPU的整个硬件组件,还包括显存、可能还有显示接口和其他电子元件。

GPU架构:NVIDIA的GPU有不同的架构,例如Kepler、Maxwell、Pascal、Turing和Ampere。每个架构都有其特定的特性和性能指标。    

de6ad58ebd95e2465155cf013468b705.jpeg

PASCAL 和 TURING

2-以下是英伟达历年推出的主要GPU核心架构

Kepler架构:推出于2012年,是英伟达推出的第一代基于Kepler架构的GPU。它引入了动态并行处理技术和GPU Boost技术,提高了性能和能效比。       

Maxwell架构:于2014年发布,Maxwell架构在功耗控制和性能方面取得了显著进步。其特点是更高的性能密度和更低的功耗。

Pascal架构:发布于2016年,Pascal架构是英伟达历史上性能和能效比最高的一代GPU架构。它引入了16nm FinFET工艺,大幅提高了性能和能效。

Turing架构:于2018年推出,Turing架构是英伟达首次引入了实时光线追踪技术的GPU架构。它还增加了Tensor核心,用于深度学习加速。

Ampere架构:2020年发布,Ampere架构是英伟达目前最新的GPU架构。它采用了8nm工艺,提供了巨大的性能提升和能效改进,尤其是在AI和图形渲染方面。    

产品线:NVIDIA提供多种产品线,包括GeForce(面向游戏和个人计算)、Quadro(面向专业图形工作站)、Tesla(面向高性能计算和数据中心)和NVIDIA RTX(集成了光线追踪和AI技术)。

CUDA核心:CUDA(Compute Unified Device Architecture)是NVIDIA推出的一种并行计算平台和编程模型。不同的GPU核心支持不同版本的CUDA。

光线追踪核心和Tensor核心:在NVIDIA的高端显卡中,如RTX系列,包含专门的光线追踪核心和Tensor核心,用于加速光线追踪渲染和AI相关的计算任务。

显存:显存是显卡的另一个重要组成部分,用于存储GPU处理的数据。显存的大小和类型直接影响显卡的性能。

CUDA版本与GPU对应:不同的NVIDIA GPU支持不同版本的CUDA。例如,某些GPU可能只支持CUDA 10.x,而其他可能支持CUDA 11.x。

驱动和CUDA的对应关系:NVIDIA的显卡驱动版本需要与CUDA版本相匹配,以确保最佳的兼容性和性能。

性能和用途:不同的GPU核心设计用于不同的用途,例如游戏、专业图形设计、科学计算和人工智能。

技术规格:每个GPU核心都有其技术规格,如核心数量、核心时钟频率、内存带宽等,这些规格决定了显卡的性能。

了解这些对应关系有助于选择合适的NVIDIA显卡来满足特定的计算需求。如果需要更详细的信息,可以参考NVIDIA的官方网站或技术文档,以获取特定GPU核心和显卡型号的详细规格和性能数据。      

3-英伟达显卡的主要系列    

GeForce系列:主要面向个人电脑用户和游戏玩家。它包括了不同的核心架构,比如目前最新的Ampere架构、之前的图灵(Turing)架构、帕斯卡(Pascal)架构等。每个架构下有多个不同型号的核心,比如在Ampere架构下,有RTX 3090、RTX 3080、RTX 3070等。

Quadro系列:主要用于专业图形设计、视频编辑等专业领域。这些核心通常提供更高的计算性能和精度,以满足专业用户的需求。

Tesla系列:主要用于高性能计算和人工智能领域,如深度学习、数据分析等。这些核心在计算能力上通常更为强大,并且支持一些特殊的计算功能。

Tegra系列:主要用于移动设备、嵌入式系统等领域,如智能手机、平板电脑、车载系统等。这些核心通常注重功耗和性能的平衡,以适应移动设备和嵌入式系统的需求。

TITAN系列:是英伟达的旗舰产品线,兼顾了游戏、创作和科学计算等多种用途,性能强大,价格昂贵。

以GeForce显卡为例,其主要的技术参数如下

GeForce 显卡的技术比较

9f055868bf38a045bfaed18bd0a1d5cb.png

   

b6f9386684960026cb356bae84739367.png

我高亮了一部分技术指标。这个图中也清晰的列出了架构的迭代关系

9ed718d0ab24eba1341d47d4f05e0dac.png

24c5d2e30b1e4b063d8a2d78bff6afd7.png

注意:上图这个横轴越短越好

等待时间越短越好。

测试条件:基于 NVIDIA 2023 年 12 月的性能测试;测试使用了配备 RTX 40 系列 GPU 和 Intel Core i9 13900HK 的笔记本电脑,以及搭载 M3 Max 或 M3 Pro 的 MacBook Pro。NVIDIA 驱动 550.76。Windows 11。搭载 Arnold 2022 (7.2.1) 渲染器的 Maya 性能测试,用于测量 NVIDIA SOL 3D 模型的渲染时间。DaVinci Resolve 18.6 性能测试,用于测量包括 Magic Mask、Depth Map、Speed Warp 等各种 AI 效果的性能。ON1 Resize AI 性能测试,用于测试将超分辨率效果应用于一批照片的时间。             

4-英伟达显卡和核心的对应关系

以下是英伟达历年发布的几代GPU核心以及其对应的显卡系列

可以看到核心和对应显卡的关系如下图

2c12a2f971c4e91a7d34028ce30eaf84.png

英伟达显卡,详细表格如下

GTX450

GF116-200-KA-A1

GTX650

GK107-450-A2

GTX650TI

GK106-220-A1

GTX660

GK106-400-A1   GK104-200-KD-A2

GTX660TI        

GK104-300-KD-A2

GTX670

GK104-325-A2

GTX680

GK104-400-A2

GTX690

GK104-355-A2

TITAN

GK110-400-A1

GTX760

GK104-225-A2

GTX770

GK104-425-A2

GTX780

GK110-300-A1

GTX950

GM206-250-A1

GTX950 SE

GM206-251-A1    GM206-251-A2

GTX960

GM206-300-A1

GTX970

GM204-200-A1

GTX980

GM204-400-A1

GTX980Ti

GM200-310-A1

TITAN X

GM200-400-A1

GTX1050

GM107-300-A2

GTX1050TI

GM107-400-A2

GTX1060

GP106-400-A1    GP104-150-KA-A1

GTX1060-5G

GP106-350-K3-A1

GTX1060-3G

GP106-300-A1   GP104-140-KD-A1  GP104-140-KA-A1

GTX1070

GP104-200-A1

GTX1070TI        

GP104-300-A1

GTX1080

GP102-400-A1

GTX1080TI

GP102-350-K1-A1

TITAN Xp

GP102-450-A1

GTX1065

TU117-300-A1  TU116-150-KA-A1  TU106-125-A1

GTX1650S

TU116-250-KA-A1

GTX1660

TU116-300-A1

GTX1660S

TU116-300-A1

GTX1660TI

TU116-400-A1

RTX2060

TU106-200A-KA-A1   TU104-150-KC-A1

RTX2060S

TU106-410-A1

RTX2070

TU106-400A-A1

RTX2070S

TU104-410-A1

RTX2080

TU104-400A-A1

RTX2080S

TU104-450-A1

RTX2080TI

TU102-300A-K1-A1

TITAN RTX

TU102-400-A1

RTX3050

GA105-300-A1

RTX3060

GA106-300-A1

RTX3060TI

GA104-200-A1

RTX3070

GA104-300-A1

RTX3070TI

GA104-400-A1

RTX3080        

GA102-200-KD-A1

RTX3080TI

GA102-225-A1

RTX3090

GA102-300-A1

RTX3090TI

GA102-350-A1

RTX4060

AD107-400-A1

RTX4060TI-8G

AD106-350-A1

RTX4060TI-16G

AD106-351-A1

RTX4070

AD104-250-A1

RTX4070TI

AD104-400-A1

RTX4080-12G

AD104-400-A1

RTX4080-16G

AD103-300-A1

RTX 4080 TI

AD102-225-A1

RTX 4090

AD102-300-A1

RTX4090TI

AD102-400-A1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

启芯硬件笔记

你的打赏鼓励启芯创作更多干货

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值