文献笔记(32)2020软硬件协同优化

本文介绍三种不同的CNN加速器设计方案:基于软硬件协同优化的方法提高性能;SmartExchange通过压缩技术实现成本效益;unzipFPGA利用权重实时生成降低存储需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目:High Performance CNN Accelerators Based on Hardware and Algorithm Co-Optimization
  • 时间:2020
  • 期刊:TCAS-1
  • 研究机构:南大

1 introduction

本篇论文的主要贡献:软硬件协同优化

  1. 网络压缩:将网络层分成两种:不剪枝的层与剪枝的层,剪枝的层网络压缩率较高,不剪枝的层取数比较规则
  2. 剪枝的层:量化成2的指数,只用移位加法
  3. 不剪枝的层:基于FIR滤波器计算卷积

在这里插入图片描述
前面几层权重规模小,且更敏感,最好不剪枝;后面几层权重规模很大,更容易冗余,适合剪枝。

2 硬件架构

基于FIR的卷积结构,计算非剪枝层
在这里插入图片描述
对于剪枝的层,需要decode + 移位器 + 加法术
在这里插入图片描述

3 实验结果

  • 网络层: VGG16
  • FPGA: VCU118
    在这里插入图片描述
    在这里插入图片描述

  • 题目:SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation
  • 时间:2020
  • 会议:ISCA
  • 研究机构:莱斯大学

1 introduction

本篇论文的主要贡献:

  1. 融合了剪枝、量化、张量分解,提出了一个压缩方法SmartExchange,本质为通过基向量乘一个较大的稀疏矩阵,得到不同层的权重
  2. 软硬件协同优化,软件上压缩+硬件加速器RTL设计

在这里插入图片描述


  • 题目:unzipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights Generation
  • 时间:2021
  • 会议:FCCM
  • 研究机构:三星/牛津

1 introduction

思路就是不直接存权重,而是在需要的时候计算生成,节省权重存储的开销,其实就是计算换存储,减少片外访存次数。
本次实验是用OVSF编码压缩权重的
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值