今天要给大家分享的统计方法是马尔可夫多态模型,思路来源是下面这篇文章:
Ward DD, Wallace LMK, Rockwood K
Cumulative health deficits, APOE genotype, and risk for later-life mild cognitive impairment and dementia
Journal of Neurology, Neurosurgery & Psychiatry 2021;92:136-142.
我们知道轻度认知损害随着时间的发展有可能会发展成痴呆,也可能会恢复,有可能不变,那这篇文章要解决的问题就是找到引起人群不同认知状态变化的风险因子,因子其实有很多啦,作者本文只关注一个,叫做年龄相关的健康赤字(age-related health deficits)。作者想探讨年龄相关的健康赤字是如何对认知状态的转换起作用的。
作者用了马尔可夫多态模型Markov multi-state models回答了自己的研究问题,相应地,如果你的感兴趣的结局变量是分类变量,比如状态,并且各种状态之间可以相互转换,你想看看到底哪些因素影响了某种转化的风险,那么今天介绍的马尔可夫多态模型就值得你好好研究下了。
多态马尔可夫模型
要理解多态马尔可夫模型multistate Markov models,首先要知道马尔可夫过程(Markov process)
马尔可夫过程(Markov process)是一类随机过程,因为是俄国数学家A.A.马尔可夫于1907年提出来的,所以有了这么个名字。该过程就是说:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 (过去 )。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性质,具有这种性质的随机过程叫做马尔可夫过程,最简单的马尔可夫过程就是一阶过程,每一个状态的转移只依赖于其之前的那一个状态。
假设这个模型的每个状态都只依赖于之前的状态,这个假设被称为马尔科夫假设,这个假设可以大大地简化具有马尔可夫过程的随机性问题。
现在给出马尔可夫模型的说明