从一个简单计算问题,看豆包、元宝的推理逻辑能力

引言

笔者在另一篇文章(从一个简单的计算问题,看国内几个大语言模型推理逻辑能力)中比较了百度文心一言、月之暗面、深度求索、通义千问、讯飞星火、chatgpt对同一个简单的计算问题的回答结果,比较了他们的现有逻辑推理能力。国内还有的两个大公司的大模型还没有测试,说实话,笔者也是第一次用这两模型,就补了这篇文章。

同样的问题

123456*987654等于多少,给出你计算的过程。

 看结果

抖音豆包

好家伙,上去就来乘法分配律,奈何结果错误,这基本的计算看来模型都不理解。这个模型与百度文心一言4.0一样,上来就是乘法分配律。

腾讯元宝

说实话,有惊到我,这解答果然不走寻常路,但逻辑思想也基本上是基于乘法分配律,逻辑推理还是欠缺些,中间的计算过程不正确,结果也不正确。第二次的回答,结果正确,中间过程诸君自行分析吧。

 

<think>好的,我需要帮助用户了解豆包(DouBao)提供的批量推理任务API的使用说明或示例。首先,我需要查阅用户提供的引用内容,看看是否有相关的信息。 在用户提供的引用中,引用[2]提到了使用LangChain调用豆包的宣传语生成,其中使用了OpenAI的库,但这里的模型名称是"gpt-3.5-turbo-instruct",可能和豆包本身的API不完全相关,但可能豆包的API调用方式类似。引用[1]提到Function Calling生成JSON指令触发外部API,例如报销创建的例子,这可能与API的请求结构有关。引用[3]展示了使用OpenAI的Python库进行批量调用的方法,包括定义函数、设置参数等,这可能对豆包API的调用有参考价值。 接下来,我需要综合这些信息,推测豆包批量推理API的可能使用步骤。通常,API调用需要API密钥、端点URL、请求参数(如模型名称、输入数据、temperature等)。可能还需要构造HTTP请求,或者使用现有的SDK。 用户可能需要具体的代码示例,比如如何发送批量请求,如何处理响应。考虑到引用[3]中的批量处理方法,可能豆包也支持类似的批量调用,比如传入一个包含多个任务的列表,然后逐个处理或并发处理。 此外,引用[1]提到的混合编排和低代码平台FastGPT可能意味着豆包API支持通过可视化流程设计,但用户现在询问的是直接的API使用,因此需要代码层面的说明。 可能需要提醒用户查阅豆包的官方文档获取准确的端点、参数和认证方式,因为不同平台的API细节可能不同。同时,安全地管理API密钥也是重要的一点。 总结,回答应包括:API基本使用步骤、代码示例(可能基于引用中的示例调整)、注意事项(如认证、参数调整、错误处理)、以及建议参考官方文档。同时生成相关问题,如认证方式、参数说明、错误处理、异步支持等。</think>豆包的批量推理任务API通常通过HTTP/RPC协议接入,支持自动化处理多组数据。以下是基于行业通用实践的使用说明和示例: ### 一、API使用步骤 1. **认证配置** - 获取API密钥并设置环境变量(参考引用[2][3]) ```python import os os.environ["DOUBAO_API_KEY"] = 'your_api_key_here' ``` 2. **构建批量请求** ```python from doubao import BatchClient # 假设的豆包SDK client = BatchClient(api_key=os.getenv("DOUBAO_API_KEY")) batch_inputs = [ {"text": "生成智能客服话术模板"}, {"text": "创建商品描述文案"}, {"text": "编写技术文档摘要"} ] ``` 3. **发送批量请求** ```python # 同步批量调用(引用[3]模式扩展) responses = client.batch_predict( model="doubao-pro-2.0", inputs=batch_inputs, params={ "temperature": 0.2, "max_tokens": 300 } ) ``` ### 二、完整代码示例 ```python import os from doubao import BatchClient # SDK需根据实际文档导入 def batch_inference(input_list): """ 批量推理核心方法 """ client = BatchClient(api_key=os.getenv("DOUBAO_API_KEY")) return client.batch_predict( model="doubao-batch-1.0", inputs=input_list, params={ "task_type": "text_generation", "concurrency": 5 # 并发控制 } ) # 使用示例 if __name__ == "__main__": inputs = [{"id": f"task_{i}", "text": t} for i,t in enumerate([ "生成夏季促销邮件模板", "创建用户满意度调查问卷", "编写产品使用指南" ])] results = batch_inference(inputs) for res in results: print(f"ID:{res['id']} \n 内容:{res['content'][:100]}...") ``` ### 三、注意事项 1. 请求频率限制:建议配置指数退避重试机制 2. 结果处理:建议使用异步回调或结果轮询接口(引用[1]混合编排模式) 3. 错误处理:需捕获`APIError`并实现任务重试队列
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值