多元时间序列分析基础二

本文介绍如何模拟具有white noise属性的多元时间序列,并通过ARMA(1, 2)模型进行模拟和预测。利用MTS包的VARMAsim函数生成原始序列,观察到序列非平稳,不适合初级多元分析,尝试使用qm和ccm函数时遇到错误。" 112314557,10540360,DataX3.0实操:Mongodb到Hive与Mysql的数据同步,"['数据同步', '大数据', 'Hadoop', '数据库迁移', 'Mongodb', 'Hive', 'MySQL']
摘要由CSDN通过智能技术生成
knitr::opts_chunk$set(echo = TRUE, message=F, warning=F)

上篇主要内容为:

  • 根据均值,协方差矩阵模拟white noise 属性的多元时间序列,
  • 根据给定的多元序列计算cross covariance/correlation matrix, 以及
  • 多元时间序列的Ljung Box Test的计算。

本篇首先模拟一个初始的多元时间序列, 同样3个观测对象, 500个观测点。首先在假定:

  • White Noise属性的残差序列 at 的协方差给定
  matrix(c(2, .5, .3, .5, 1.5, .6, .3, .6, 3 ), 3, 3)
  • 原始时间 zt 序列可以通过ARMA(1, 2)模型进行模拟和预测

z1,3z1,4z1,502z2,3z2,4z2,502z3,3z3,4z3,502=ϕ1,0ϕ1,0ϕ1,0ϕ2,0ϕ2,0ϕ2,0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值