IWR6843ISK+DCA1000EVM+mmwave studio原始数据采集

1.准备工作

硬件设施:本实验需要1台IWR6843ISK毫米波雷达,1台DCA1000EVM评估板,2根micro USB线,1根RJ45网线,1个5V/2.5A(电流要求不小于2.5A)电源适配器,1台电脑。

软件设施:①matlab:编程软件,实现数据读取;

②Uniflash8.2.0:程序配置软件,烧录配置文件;

③XDS Emulation Software Package v6.0.579.0 及以上版本:XDS Emulation Software (EMUPack) Download

④mmWave Studio 02.01.01.00:该工具集拥有评估功能、线性调频脉冲原型设计功能和开箱即用演示实验功能

⑤FTDI驱动:mmWave Studio安装时自动安装该驱动

⑥MATLAB Runtime Engine v8.5.1 :即下载安装MCR_R2015aSP1_win32_installer.exe,地址如下:

https://www.mathworks.com/supportfiles/downloads/R2015a/deployment_files/R2015aSP1/installers/win32/MCR_R2015aSP1_win32_installer.exe

⑦以太网接口配置:

控制面板→网络和Internet→网络连接→以太网(右击)→属性→Internet协议版本4(TCP/IPv4)属性→IP地址为192.168.33.30

2.实验简介

使用IWR6843isk+DCA1000+mmwave studio进行毫米波雷达原始数据采集。

3.实验步骤

3.1把bin固件烧录到毫米波雷达板子:

IWR6843ISK与笔记本电脑相连,检查端口是否正确,端口应如下所示,一个为enhanced com port(用户端口),一个为standard com port(数据端口);

将IWR6843ISK SOP值设置为刷写模式,即设置为10110X,设置完成后,再按一下RESET(S2)键;

打开Uniflash,选择IWR6843,再点击start键,选择xwr68xx_mmw_demo.bin文件,设置好端口(即前面的enhanced com port端口),再点击load image键进行烧录;

烧录成功后,由于接下来的工作要和DCA1000配合使用,根据用户手册,将SOP值设为01100X;若烧录不成功,则:①检查bin文件路径中是否有中文,②检查串口是否设置正确,③检查芯片是否选择正确,④若一直烧写不成功,可以在Setting里面点击Format SFLASH清空之后再试试。

3.2 使用mmWaveStudio对mmWave设备进行配置

将IWR6843ISK与DCA1000EVM相连,将电源适配器与DCA1000EVM相连,确定IWR6843ISK的SOP值为01100X,DCA1000EVM SW1处设置为110,SW2处设置为00001000,将SW3设置为1。需注意DCA1000EVM的J1处(RADAR_FTDI)与电脑相连,不要连接成FPGA!!!

具体连接如下图所示

若均设置正确,则在设备管理器中会出现以下6个端口。

打开mmwavestudio,出现以下界面表示mmwavestudio可以正常工作

3.2.1点击setup DCA1000,单击connect,reset and按钮

3.2.2单击蓝色框set(1)

3.2.3端口设置为COM6(enhanced com port),波特率设置为921600,单击蓝色框connect(2)

3.2.4从mmwave studio库中找到BSS FW和MSS FW对应文件进行配置,然后依次单击load键

 

3.2.5单击按钮 SPI connect(5)

3.2.6单击按钮 RF Power-up(6)

3.2.7配置好的界面如下所示:

3.3基于IWR6843ISK+MMWAVE STUDIO 配置TDM-MIMO

3.3.1根据具体情况选择收发天线数,以三发四收为例,其他配置选择默认,LP Mode的设置,有2个模式:Regular ADC和Low Power ADC,Low Power ADC在这个模式下,为了节省功耗将采样时钟速率降低一半

3.3.2dataconfig页面选择默认配置

3.3.3sensorconfig中profile配置为默认,chirp配置如下所示,

 

点击manage chirps 出现如下界面

Frame配置如下

3.4数据采集

DCA1000 ARM→triggerframe(触发帧, EVM板开始发射信号)→stop frame→postproc(当数据采集完后,点击PostProc进行数据处理)

采集过程DCAEVM指示灯闪烁

点击PostProc后的界面

MATLAB如何解析DCA1000IWR6843采集的数据?在MATLAB中读取bin文件代码如下:

%%% This script is used to read the binary file produced by the DCA1000
%%% and Mmwave Studio
%%% Command to run in Matlab GUI -readDCA1000('<ADC capture bin file>') 
function [retVal] = readDCA1000(~)
%% global variables
% change based on sensor config
numADCSamples = 256; % number of ADC samples per chirp
numADCBits = 16; % number of ADC bits per sample
numRX = 4; % number of receivers
numLanes = 2; % do not change. number of lanes is always 2
isReal = 0; % set to 1 if real only data, 0 if complex data0
%% read file
% read .bin file 
fid = fopen(fileName,'r');
adcData = fread(fid, 'int16');
% if 12 or 14 bits ADC per sample compensate for sign extension
if numADCBits ~= 16
   l_max = 2^(numADCBits-1)-1;
   adcData(adcData > l_max) = adcData(adcData > l_max) - 2^numADCBits;
end
fclose(fid);
fileSize = size(adcData, 1);
% real data reshape, filesize = numADCSamples*numChirps
if isReal
    numChirps = fileSize/numADCSamples/numRX;
    LVDS = zeros(1, fileSize);
%create column for each chirp
    LVDS = reshape(adcData, numADCSamples*numRX, numChirps);
%each row is data from one chirp
    LVDS = LVDS.';
else
% for complex data
% filesize = 2 * numADCSamples*numChirps
    numChirps = fileSize/2/numADCSamples/numRX;
    LVDS = zeros(1, fileSize/2);
%combine real and imaginary part into complex data
%read in file: 2I is followed by 2Q
    counter = 1;
    for i=1:4:fileSize-1
        LVDS(1,counter) = adcData(i) + sqrt(-1)*adcData(i+2); LVDS(1,counter+1) = adcData(i+1)+sqrt(-1)*adcData(i+3); counter = counter + 2;
    end
% create column for each chirp
    LVDS = reshape(LVDS, numADCSamples*numRX, numChirps);
%each row is data from one chirp
    LVDS = LVDS.';
end
%organize data per RX
adcData = zeros(numRX,numChirps*numADCSamples);
for row = 1:numRX
    for i = 1: numChirps
        adcData(row, (i-1)*numADCSamples+1:i*numADCSamples) = LVDS(i, (row-1)*numADCSamples+1:row*numADCSamples);
    end
end
% return receiver data
retVal = adcData;

       大家一定很好奇其他板子在MATLAB中该如何解析,具体参考下面文档,里面有相关maltab代码。链接如下:

https://www.ti.com.cn/lit/an/swra581b/swra581b.pdf?ts=1684999613765&ref_url=https%253A%252F%252Fcn.bing.com%252F

<think>好的,用户让我介绍一下DCA1000EVMIWR6843ISK这两个设备,以及它们的组合使用。我需要先回忆这两者的基本信息,然后整理出它们的用途、特点以及如何配合工作。 首先,DCA1000EVM是TI的一款数据采集卡,主要用于雷达传感器的原始数据捕获。而IWR6843ISK是基于毫米波雷达的评估模块,属于传感器部分。这两者通常一起使用,用于开发雷达应用,比如障碍物检测、手势识别等。 接下来,我需要分步骤介绍每个设备。对于DCA1000EVM,要说明它的主要功能,比如通过LVDS接口捕获数据,支持的雷达型号,数据传输到PC的能力,以及适用的场景。然后介绍IWR6843ISK,包括它的频段、天线配置、处理能力,以及集成的DSP和MCU,适合的应用领域。 之后,需要解释它们如何协同工作,比如DCA1000EVM连接到IWR6843ISK,捕获原始ADC数据,传输到上位机进行后续处理。还要提到配套的软件工具,如MMWave Studio,以及开发流程中的步骤,比如配置参数、数据采集和分析。 应用场景部分需要列举几个典型的例子,如自动驾驶、工业检测、智能家居等,说明它们的实际用途。最后给出使用建议,比如熟悉文档、利用TI的资源,以及注意硬件连接和软件兼容性。 需要注意的是,用户可能对这两个设备的实际应用和如何开始使用感兴趣,所以需要强调开发资源和工具的支持,以及可能的应用方向。同时要确保技术细节准确,比如处理器型号、频段、天线数量等,避免错误。 检查是否有遗漏的重要信息,比如数据传输接口、处理能力、软件生态等。同时保持语言简洁,结构清晰,分点说明,便于用户理解。确保符合系统级指令中的格式要求,数学表达式和公式使用正确的LaTeX格式,但在这个问题中可能涉及较少,主要注意段落和标号的使用。</think>DCA1000EVM + IWR6843ISK 是德州仪器(TI)推出的毫米波雷达开发套件组合,主要用于雷达信号采集与算法研究。以下分模块为您解析: --- ### 一、硬件组成及功能 1. **IWR6843ISK 评估板** - **核心芯片**:搭载 TI 的 IWR6843 毫米波雷达 SoC - 工作频段:60-64GHz - 4 发射天线 + 3 接收天线(MIMO 架构) - 集成 DSP(C674x)和 ARM Cortex-R4F 处理器 - **功能特性**: - 支持 FMCW 调频连续波雷达 - 最大探测距离 80 米 - 可编程信号处理链 2. **DCA1000EVM 数据采集卡** - **核心功能**:通过 LVDS 接口实时捕获原始 ADC 数据 - **接口配置**: - 60-pin 高速接口连接雷达板 - 千兆以太网传输至 PC(最高 1Gbps) - **关键参数**: - 支持 4 通道同步采集 - 采样率最高 12.5MSPS --- ### 二、系统协同工作原理 $$ \begin{aligned} &\text{雷达信号发射} \rightarrow \text{目标反射} \rightarrow \text{接收信号} \\ &\downarrow \text{ADC 数字化} \\ &\text{DCA1000 捕获原始数据} \rightarrow \text{PC 端分析} \end{aligned} $$ 1. **开发流程示例**: - 通过 **MMWave Studio** 配置雷达参数(如 chirp 斜率、采样点数) - DCA1000 捕获原始 IQ 数据(*.bin 格式) - 使用 MATLAB/Python 进行 CFAR 检测、点云聚类等算法开发 --- ### 三、典型应用场景 1. **自动驾驶** - 前向碰撞预警(FCW) - 自动泊车辅助(APA) 2. **工业检测** - 传送带物体计数(精度达毫米级) - 液位测量(穿透非金属容器) 3. **智能家居** - 呼吸监测(误差 < 0.5 次/分钟) - 手势识别(支持 5 种预定义手势) --- ### 四、开发资源建议 1. **必备软件**: - MMWave SDK(含驱动程序) - mmWave_mcuplus_SDK(算法开发框架) 2. **调试工具**: - Uniflash 烧录工具 - TeraTerm 串口监视器 3. **参考设计**: - TI 官方提供 **People Counting** 等参考源码 - 开源社区(如 GitHub)有手势识别开源项目 --- ### 五、注意事项 1. 硬件连接时需确保 60-pin 接口正确锁紧 2. 数据采集前需校准 RF 前端(使用内置校准程序) 3. 开发环境建议使用 Windows 10(兼容性最佳) 该套件为毫米波雷达开发者提供了从硬件层到算法层的完整验证平台,特别适合 ADAS、工业物联网等领域的原型开发
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值