常微分方程机敏问答[4] #20210622


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

多维系统

  1. 四个角上四只乌龟分别盯紧”下一只“,以匀速运动:直觉上是()螺线。为了说明解存在唯一(从而对称),我们可以考虑()维复数值系统或者()维实数值系统,再考察解的存在唯一性。
  2. 三维空间中,物体加速度始终和速度、位矢同平面(线性相关),则物体是否在同一平面内运动?如果 r ⃗ ¨ ( t ) = α ( t ) r ⃗ ˙ ( t ) + β ( t ) r ⃗ ˙ ( t ) \ddot {\vec r}(t)=\alpha(t)\dot {\vec r}(t)+\beta(t)\dot {\vec r}(t) r ¨(t)=α(t)r ˙(t)+β(t)r ˙(t),且 r ⃗ × r ⃗ ˙ \vec r\times\dot{\vec r} r ×r ˙在某时刻附近不为0呢?(提示:在同一平面内运动等价于位移垂直于什么向量?)
  3. 高阶和多维有何关系?
  4. 自治方程 F ( y , y ′ , y ′ ′ ) = 0 F(y,y',y'')=0 F(y,y,y)=0怎么降为一阶、一维的方程?
  5. x ′ ′ = f ( x ) x''=f(x) x=f(x)的物理意义是什么?由此怎么作相图?相图上”逆时针转“物理意义是什么?
  6. x ′ ′ = a ( x − x 3 / 6 ) x''=a(x-x^3/6) x=a(xx3/6)(单摆展开到三阶项)时相图如何?(注:这能反映单摆一次沿一个方向摆动角度超过 2 π 2\pi 2π的情况,而只看一阶项不行)
  7. 二维情况,皮卡存在定理的解存在区域形如什么?李氏条件怎么表达?

答案

  1. 等角,4,8
  2. 不一定(如:先停再走)。一定。设 n ⃗ = r ⃗ × r ⃗ ˙ \vec n=\vec r\times \dot{\vec r} n =r ×r ˙(“法向量”,其在某时刻附近不为0), n ⃗ \vec n n 初值 n ⃗ 0 \vec n_0 n 0,则在同一平面内运动等价于 r ⃗ ⊥ n ⃗ 0 \vec r\perp \vec n_0 r n 0. 现直接将 r ⃗ ⋅ n ⃗ 0 \vec r\cdot \vec n_0 r n 0作为时间的函数 f f f,则 f ′ ′ ( t ) = α ( t ) f ( t ) + β ( t ) f ′ ( t ) f''(t)=\alpha(t)f(t)+\beta(t)f'(t) f(t)=α(t)f(t)+β(t)f(t),再根据存在唯一性定理, f ( t ) = 0 f(t)=0 f(t)=0是唯一可能的解。
  3. y ( n ) y^{(n)} y(n)看成变量,则可将高阶方程升维,并降至一阶。
  4. y ′ = z , F ( y , z , d z / d x ) = F ( y , z , z y ′ z ) = 0 y'=z,F(y,z,dz/dx)=F(y,z,z_y' z)=0 y=z,F(y,z,dz/dx)=F(y,z,zyz)=0
  5. 提示:画出势函数,并特别注意正负。略。
  6. x ′ = y x'=y x=y,再在二维系统中画使得 y ′ = 0 y'=0 y=0的曲线、画使得 x ′ = 0 x'=0 x=0的曲线,标记出各个区域 x ′ , y ′ x',y' x,y符号,定性考察。
  7. 根据范数选择不同,可能是各种柱形。表达李氏条件时也要说明范数选择。

连续依赖性

  1. 考察解对参数连续依赖性。“ y y y一致满足李氏条件”中一致是什么意思?结论中所谓“解连续”的闭区域是什么?
  2. 接上,皮卡序列的某一项形如 ϕ n ( x , λ ) \phi_n(x,\lambda) ϕn(x,λ),即以 λ \lambda λ为参数的 x x x的一元函数。关于 n n n维向量参数的连续性实际上相当于()元函数的连续性。
  3. 接上,皮卡序列一致收敛的闭区域是什么?
  4. 接上,为什么初值也是参数?把初值看成参数对结论的闭区域有何影响?
  5. 解的存在唯一性说明映射 ( x , y ) ↦ ( x , ϕ ( x ; η = y ) ) (x,y)\mapsto(x,\phi(x;\eta=y)) (x,y)(x,ϕ(x;η=y))(此记号意为初值 η \eta η y y y时,解在 x x x处取值是 ϕ ( x ; η = y ) \phi(x;\eta=y) ϕ(x;η=y))是连续的()射,从而这个映射的逆映射就相当于把解曲线族“拉直”。
  6. 大范围对初值连续依赖性:已知初值问题有解 ϕ \phi ϕ,满足局部(一致)李氏条件,在()(填区间的性质)区间内考察,在任何一点 ( x 0 , ϕ ( x 0 ) ) (x_0,\phi(x_0)) (x0,ϕ(x0))作小扰动范围内(即初值变成 ( x 0 , ϕ ( x 0 ) + δ ) (x_0,\phi(x_0)+\delta) (x0,ϕ(x0)+δ)),解在闭区域上(关于参数)连续。为什么不是(一维)闭区间
  7. 接上,利用()定理把局部李氏条件拓展到整体。
  8. 接上,此时作皮卡序列时,第0项和证明局部情况连续依赖性中的第0项有什么异同?
  9. 接上,为了防止皮卡序列迭代过程中超出满足()条件的范围,需要取比()细得多的”管子“。
  10. y ′ = f ( x , y ) y'=f(x,y) y=f(x,y) f f f在区域上连续,且经过区域 R R R内任一点解曲线存在唯一,则微分方程的解对初值(局部)连续依赖。证明用反证法,在闭区间上找“坏点”的聚点,并利用()引理找一致收敛子列(并利用唯一性)得矛盾。

答案

  1. 关于 x , λ x,\lambda x,λ一致。 ∣ x ∣ ≤ h , ∣ λ − λ 0 ∣ ≤ c |x|\le h,|\lambda-\lambda_0|\le c xh,λλ0c,其中 λ \lambda λ可取的范围就是前述“一致”的范围。
  2. n + 1 n+1 n+1
  3. 同0.中闭区域。(回忆事实:一致收敛保持连续性)
  4. 把初值不为0的初值问题平移一下(做一个减法),从而变成函数 f ( x , y ) f(x,y) f(x,y)不同了,但初值为0的初值问题,则其中减的量是“参数”。
    结论的闭区域缩小。举例:可以留一半余地给初值的变化,即 ∣ x − x 0 ∣ ≤ h 2 = m i n ( a , b / M ) 2 |x-x_0|\le\frac h2=\frac{min(a,b/M)}2 xx02h=2min(a,b/M) ∣ η − y 0 ∣ ≤ b / 2 |\eta-y_0|\le b/2 ηy0b/2.
  5. 有界闭。注意关于参数也要连续,所以考察的当然不是一元的连续性。
  6. 有限覆盖
  7. 不同:不是常数,而是“管”的“中心线”。一个相同点:两者中都出现参数,因为考察的是对参数的连续依赖性!
  8. (整体)李氏,满足整体李氏条件的“管子”
  9. Arzela-Ascoli.
    此处我们再次强调:得到一致收敛的子列不需要李氏条件。

多维线性微分方程组

  1. 写出多维线性微分方程组的(列)向量形式。它的满足任何可能初值条件的解在整个区间上存在且唯一,该事实用到对于任意确定的 x x x,都有 y ⃗ ˙ \dot{\vec y} y ˙关于 y ⃗ \vec y y ()。
  2. ()微分方程组的解的集合构成线性空间。如何考察它的维数?线性空间总有零元素此处说明什么?什么是一组函数的线性无关?在齐次线性微分方程组中一组解线性无关和初值的线性无关有什么关系?
  3. 基本解组和通解有何关系?如果向量都是列向量,那么如何利用矩阵书写?
  4. 接上,朗斯基行列式 W ( x ) W(x) W(x)是关于 x x x的函数,它和2.有何关系? W W W满足什么一阶线性微分方程?为什么?
  5. 接上,讨论 W ( x ) W(x) W(x)为0与线性无关的关系。
  6. 齐次线性微分方程组解矩阵的导数是什么?
  7. 考察解矩阵左乘或右乘常数非奇异矩阵。
  8. 直接背诵非齐次线性微分方程组的特解公式,分析怎么退化到一维。该公式相比一维情况,实用意义有何不同?
  9. y ′ = y + z , z ′ = z / x y'=y+z,z'=z/x y=y+z,z=z/x的求解:这是()微分方程组,所以可以求出两个()的特解得到通解。比如先用第二式求解 z z z的所有可能解,再代入另一式。
  10. 为什么 ( 1 , 0 , 0 ) , ( x , 0 , 0 ) , ( x 2 , 0 , 0 ) (1,0,0),(x,0,0),(x^2,0,0) (1,0,0),(x,0,0),(x2,0,0)不可能同时满足任何一个三阶齐次线性微分方程组?
  11. 为了证明基解矩阵完全决定齐次线性微分方程组(当然可能多个基解矩阵对应同一个方程组),回忆线性无关情况下()(人名)行列式恒不为零,就可以考察任一点 x 0 x_0 x0处情况,并用()(方程组种类)方程组有 n n n无关解证明()恒为零矩阵。
  12. 用常数变易法考察 y ⃗ ˙ = A y ⃗ + f ( x , y ⃗ ) \dot{\vec y}=A\vec y+f(x,\vec y) y ˙=Ay +f(x,y ).

答案

  1. y ⃗ ˙ = A ( x ) y ⃗ + e ⃗ ( x ) \dot {\vec y}=A(x)\vec y+\vec e(x) y ˙=A(x)y +e (x),注意带 ( x ) (x) (x)的记号表示 x x x的函数构成的矩阵或向量。是仿射变换从而李氏连续。
  2. 齐次线性。构造初值所处的线性空间到它的线性同构。齐次线性微分方程组总有零解(当且仅当任意一点初值为0)。能否非平凡表出恒为0的函数。等价。
  3. 通 解 = ∑ C i ϕ i ( x ) 通解=\sum C_i\phi_i(x) =Ciϕi(x)(此处 ϕ i \phi_i ϕi均是 n ⃗ \vec n n 维(列)向量值函数)。可以定义基解矩阵 Φ = ( ϕ 1 , ⋯   , ϕ n ) \Phi=(\phi_1,\cdots,\phi_n) Φ=(ϕ1,,ϕn),则 通 解 = Φ ( x ) C ⃗ 通解=\Phi(x)\vec C =Φ(x)C C ⃗ \vec C C 列(常值)向量
  4. W ( x ) W(x) W(x)就是基解矩阵在某 x x x处行列式。 W ′ = t r ( A ( x ) ) W W'=tr(A(x))W W=tr(A(x))W. 提示:行列式的多重线性。(注:可以用一维情形记忆)
  5. W W W只可能恒为0或恒不为0,且恒为0当且仅当线性相关。(注意根据1.的线性同构,可以只考察 W ( x 0 ) W(x_0) W(x0)就能得到相关性)
  6. A Φ A\Phi AΦ(是“矩阵值函数”)
  7. Φ B \Phi B ΦB仍是基解矩阵,而 B Φ B\Phi BΦ导数为 B A Φ BA\Phi BAΦ,所以是齐次线性微分方程组 y ⃗ ˙ = B A B − 1 y ⃗ \dot{\vec y}=BAB^{-1}\vec y y ˙=BAB1y 的基解矩阵。
  8. Φ ( x ) ∫ x 0 x Φ − 1 ( s ) f ( s ) d s \Phi(x)\int_{x_0}^x\Phi^{-1}(s)f(s)ds Φ(x)x0xΦ1(s)f(s)ds Φ \Phi Φ就是一维的 e − ∫ p d x e^{-\int pdx} epdx(注意反号), f f f就是 q q q. 注意此处 f f f是列向量, Φ \Phi Φ恒非奇异。
    高维情况不好算(不能像一维一样显式表达)。
  9. 齐次线性,线性无关。(注:有趣的是, x = 0 x=0 x=0处,朗斯基行列式可能等于0. 但注意 x = 0 x=0 x=0不在定义域)
  10. 线性无关(即不能非平凡组合出恒为0的函数)但朗斯基行列式可能为0.(实际上是恒为0)
  11. 朗斯基,齐次线性(对于数值的,不是对于函数的), A 1 − A 2 A_1-A_2 A1A2(这里设我们考察的两组齐次线性微分方程组分别是 y ⃗ ˙ = A i y ⃗ ( i = 1 , 2 ) \dot{\vec y}=A_i\vec y(i=1,2) y ˙=Aiy (i=1,2)
  12. 方法还是代入 y ⃗ = Φ ( x ) C ⃗ \vec y=\Phi(x)\vec C y =Φ(x)C (千万注意求导的时候不要忘记 C ⃗ \vec C C 也要求)。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值