YOLOv10改进 | 检测头篇 | YOLOv10引入四头检测头

1.  改后结构图:

2. 创建一个yolov10nsitou.yaml

# Parameters
nc: 2 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 
### YOLOv10 Object Detection Head Implementation YOLO (You Only Look Once) 是一种广泛应用于实时目标检测的算法。随着版本不断迭代更新,YOLO系列模型在速度和精度方面都有显著提升。对于YOLOv10而言,在保持原有优势的基础上引入了一些新特性来增强性能。 #### 使用MobileNetV2作为骨干网络 为了提高计算效率并减少参数数量,可以考虑使用更高效的特征提取器替代传统的卷积神经网络架构。MobileNetV2凭借其独特的倒残差结构以及线性瓶颈设计成为了一个理想的选择[^1]: - **倒残差结构**:传统残差连接通常位于浅层宽通道之后;而MobileNetV2则相反,先经过窄通道再扩展到较宽带宽。 - **线性瓶颈**:非线性激活函数仅作用于较小维度的空间内,从而降低了运算复杂度而不影响表征能力。 这些特点使得MobileNetV2非常适合部署于资源受限环境下的物体识别任务中。 #### 添加LSKAttention机制优化检测效果 除了更换更加轻便有效的主干网之外,还可以集成先进的注意力模块以改善模型表现。特别是针对小尺寸物品难以被准确定位的问题,LSKAttention提供了一种解决方案[^2]: - **多尺度感受野建模**:通过不同大小的感受区域捕捉全局上下文信息,有助于解决因比例尺差异造成的小物件漏检现象。 - **自适应权重分配**:根据不同位置的重要性动态调整关注程度,强化了关键部位的信息传递路径。 以下是基于上述组件实现的一个简化版YOLOv10对象检测头Python代码片段: ```python import torch.nn as nn class YOLOv10DetectionHead(nn.Module): def __init__(self, num_classes=80): super(YOLOv10DetectionHead, self).__init__() # Backbone using MobileNetV2 architecture self.backbone = mobilenet_v2(pretrained=True).features # Add LSK Attention layer after backbone output self.lsk_attention = LargeScaleKernelAttention() # Define prediction layers for bounding boxes and class probabilities self.prediction_layers = nn.Sequential( nn.Conv2d(in_channels=..., out_channels=(num_classes + 5)*3, kernel_size=1), ... ) def forward(self, x): features = self.backbone(x) attended_features = self.lsk_attention(features) predictions = self.prediction_layers(attended_features) return predictions.view(-1, ...) ``` 此段伪代码展示了如何组合MobileNetV2与LSKAttention两大核心要素构建一个现代化的目标检测头部结构。实际开发过程中还需要根据具体应用场景做适当修改和完善。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值