YOLOv11改进 | 注意力篇 | YOLOv11引入ACmix注意力机制

1. ACmix介绍

1.1  摘要:卷积和自注意力是表示学习的两种强大技术,它们通常被认为是两种彼此不同的同行方法。 在本文中,我们表明它们之间存在很强的潜在关系,从某种意义上说,这两种范式的大量计算实际上是通过相同的操作完成的。 具体来说,我们首先证明内核大小为 k×k 的传统卷积可以分解为 k2 个单独的 1×1 卷积,然后进行移位和求和操作。 然后,我们将自注意力模块中的查询、键和值的投影解释为多个 1×1 卷积,然后计算注意力权重和值的聚合。 因此,两个模块的第一阶段都包括类似的操作。 更重要的是,与第二级相比,第一级贡献了主要的计算复杂性(通道大小的平方)。 这种观察自然地导致了这两个看似不同的范式的优雅整合,即一个混合模型,它既享受自注意力和卷积(ACmix)的好处,同时与纯卷积或自注意力对应物相比具有最小的计算开销。 大量实验表明,我们的模型在图像识别和下游任务方面比竞争基线取得了持续改进的结果。

官方论文地址:

### 使用注意力机制优化 YOLOv11 目标检测模型的方法 #### SimAM 模块简介 SimAM是一种简单且无参数的注意力模块,适用于卷积神经网络。此模块基于神经科学理论定义的能量函数来计算三维注意力建立权重,能够有效地提升网络表示能力,并具备轻量化和高效的特性[^1]。 ```python import torch.nn as nn class SimAM(nn.Module): def __init__(self, lambda_param=0.75): super(SimAM, self).__init__() self.lambda_param = lambda_param def forward(self, x): b, c, h, w = x.size() n = w * h - 1 # 计算能量分布 x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2) val = x_minus_mu_square / ((n/(n-1))*(x_minus_mu_square.sum(dim=[2,3], keepdim=True))) # 应用激活函数得到最终输出 return x * (val + self.lambda_param + 1).clamp(min=0).sqrt() ``` #### 将SimAM融入YOLOv11架构 为了使YOLOv11受益于SimAM的优势,在设计阶段可以考虑将SimAM放置在网络的不同层次上,特别是在骨干网之后或颈部之前的位置。这有助于加强特征提取过程中的空间信息处理,进而改善对于小型目标及部分遮挡对象的识别效果。 #### ACmix注意力与卷积混合模型的应用 另一种方法涉及采用ACmix注意力机制及其变体C2PSA。这种方法允许同时利用自注意力带来的全局感受野优势以及标准卷积捕捉局部模式的能力。具体来说,可以通过一系列1×1卷积层先映射输入特征图至中间状态;接着依据特定策略组合这些特征以形成新的表达形式[^3]。 ```python from functools import partial import torch from timm.models.layers import DropPath, trunc_normal_ def acmix(x, lamda=0.1): B_, C_, H_, W_ = x.shape qkv = x.reshape(B_, C_, -1) # 实现细节省略... out = ... # 经过处理后的张量 return out class ACMixBlock(nn.Module): def __init__(self, dim, num_heads=8, mlp_ratio=4., drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6)): super().__init__() self.norm1 = norm_layer(dim) self.attn = acmix(...) ... ``` 通过上述两种途径之一或者两者结合的方式引入适当类型的注意力机制,可望显著提高YOLOv11在各种条件下的表现水平,特别是针对那些难以被发现的小型物体或是处于复杂环境里的实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值