生物信息学入门 GEO芯片数据差异表达分析时是否需要log2以及标准化的问题

GEO中的Series Matrix File(s)通常是经过了标准化和对数转换的数据。但不全是。在实际应用的时候需要根据情况判断一下。对于芯片数据,可能作者将.cel的文件处理成未标准化的数据直接上传。一般来说,在判断counts是否需要重新标准化以及是否需要log2时,可以根据数值大小粗略估计。

如果表达丰度的数值在50以内,通常是经过log2转化的。如果数字在几百几千,则是未经转化的。因为2的几十次方已经非常巨大,如果2的几百次方,则不符合实际情况。

对于是否需要标准化的问题,可以通过boxplot函数观察一下样本表达丰度值的分布是否整齐进行判断。

在差异表达分析教程给出的代码中已经包含了boxplot函数。

详细请见:https://blog.csdn.net/tuanzide5233/article/details/83541443

数据需要经过log2转换的原因在:https://blog.csdn.net/tuanzide5233/article/details/88542805

  • 18
    点赞
  • 86
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
差异表达分析是一种常用的方法,用于比较不同条件下基因表达水平的变化。GEOquery和limma是R语言中广泛使用的两个包,可用于处理分析芯片数据差异表达。下面是使用GEOquery和limma进行差异表达分析的步骤: 1. 下载和导入芯片数据 使用GEOquery包中的getGEO函数下载芯片数据并导入到R中。例如,如果您要下载GSE12345数据集,可以使用以下代码: ``` library(GEOquery) gset <- getGEO("GSE12345") ``` 2. 数据质量控制 在进行差异表达分析之前,需要数据进行质量控制。使用GEOquery包中的summary函数和plotPCA函数可以对芯片数据进行基本的质量控制。例如,可以使用以下代码绘制PCA图: ``` library(limma) library(GEOquery) gset <- getGEO("GSE12345") edata <- exprs(gset[[1]]) edata <- t(edata) edata <- na.omit(edata) fit <- prcomp(edata) plotPCA(fit) ``` 3. 数据处理芯片数据进行归一化和标准化处理,以消除不同芯片之间的差异,并确保数据符合正态分布。常用的预处理方法包括RMA、GCRMA、MAS5等。使用limma包中的normalizeBetweenArrays函数可以对芯片数据进行预处理。例如,可以使用以下代码对芯片数据进行RMA预处理: ``` library(limma) library(GEOquery) gset <- getGEO("GSE12345") edata <- exprs(gset[[1]]) edata <- t(edata) edata <- na.omit(edata) edata <- backgroundCorrect.RMA(edata) edata <- normalize.quantiles.RMA(edata) edata <- log2(edata) ``` 4. 差异表达分析 使用limma包中的lmFit函数和eBayes函数可以进行差异表达分析。lmFit函数用于拟合线性模型,eBayes函数用于对差异表达结果进行统计显著性检验。例如,可以使用以下代码进行差异表达分析: ``` library(limma) library(GEOquery) gset <- getGEO("GSE12345") edata <- exprs(gset[[1]]) edata <- t(edata) edata <- na.omit(edata) edata <- backgroundCorrect.RMA(edata) edata <- normalize.quantiles.RMA(edata) edata <- log2(edata) factors <- c(0,0,0,1,1,1) design <- model.matrix(~factors) fit <- lmFit(edata, design) fit <- eBayes(fit) results <- topTable(fit, adjust="BH", sort.by="P", n=1000) ``` 上述代码中,factors表示芯片数据中不同样本的分组信息,design表示设计矩阵,fit表示拟合的线性模型,results表示差异表达结果。 5. 结果分析 根据差异表达结果,可以进行进一步的功能分析、通路分析等。常用的工具包括ClusterProfiler、GOstats、KEGGprofile等。例如,可以使用以下代码进行GO分析: ``` library(ClusterProfiler) gset <- getGEO("GSE12345") edata <- exprs(gset[[1]]) edata <- t(edata) edata <- na.omit(edata) edata <- backgroundCorrect.RMA(edata) edata <- normalize.quantiles.RMA(edata) edata <- log2(edata) factors <- c(0,0,0,1,1,1) design <- model.matrix(~factors) fit <- lmFit(edata, design) fit <- eBayes(fit) results <- topTable(fit, adjust="BH", sort.by="P", n=1000) genes <- rownames(results) geneList <- names(genes) geneList <- names(genes)[abs(results$logFC) > 1 & results$adj.P.Val < 0.05] ego <- enrichGO(geneList, OrgDb="org.Hs.eg.db", ont="BP") barplot(ego) ``` 上述代码中,geneList表示差异表达基因列表,ego表示进行GO分析所得到的富集结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值