9.删除点云中的重复点一

目录

1. 提高数据质量

2. 优化处理效率

3.示例代码

1. 提高数据质量

  • 减少冗余:重复的点云数据会增加数据的冗余度,通过删除重复点删除(即那些彼此距离非常近的点),可以精简数据集,使其更加紧凑。
  • 提高精度:重复点可能会在计算和分析过程中引入误差,删除它们有助于提高后续处理的精度。

2. 优化处理效率

  • 减少计算量:在处理点云数据时,重复点会导致不必要的计算开销。通过删除重复点,可以降低计算复杂度,提高处理效率。
  • 加速处理速度:精简后的点云数据集可以更快地加载、处理和可视化,从而提高整体处理速度。

3.示例代码

#include <iostream>
#include <algorithm>
#include <vector>
#include <pcl/io/pcd_io.h>  
#include <p
pcl库提供了多种方法来删除点云重复。其最常用和简单的方法是使用pcl::removeNaNFromPointCloud函数来删除NaN(非数字)重复。该函数将在源点云删除重复,并将处理后的点云赋值给另一个点云。以下是使用pcl::removeNaNFromPointCloud函数删除点云重复的示例代码: ``` pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZRGB>); pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZRGB>); // 假设cloud_in是输入的点云 // 删除NaN std::vector<int> indices; pcl::removeNaNFromPointCloud(*cloud_in, *cloud_out, indices); // 删除重复 std::vector<int> indices_no_duplicate; pcl::PointIndices::Ptr output_indices (new PointIndices); pcl::removeDuplicates(*cloud_out, output_indices->indices, 0.001); pcl::ExtractIndices<pcl::PointXYZRGB> extract; extract.setInputCloud(cloud_out); extract.setIndices(output_indices); pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_no_duplicate (new pcl::PointCloud<pcl::PointXYZRGB>); extract.filter(*cloud_no_duplicate); // cloud_no_duplicate即为处理后的点云,其不包含重复 ``` 在上述代码,首先使用pcl::removeNaNFromPointCloud函数将源点云的NaN删除,并保存非NaN的索引到indices。然后使用pcl::removeDuplicates函数将非NaN重复删除,并保存非重复的索引到output_indices->indices。接着使用pcl::ExtractIndices将非重复提取出来并保存到cloud_no_duplicate。最终得到的cloud_no_duplicate就是处理后的不包含重复点云
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值