旋转坐标系
(1)绕x轴旋转 ϕ \phi ϕ,其旋转矩阵为
X
(
ϕ
)
=
[
1
0
0
0
c
o
s
ϕ
s
i
n
ϕ
0
−
s
i
n
ϕ
c
o
s
ϕ
]
X(\phi)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\phi & sin\phi \\ 0 & -sin\phi & cos\phi \\ \end{bmatrix}
X(ϕ)=⎣⎡1000cosϕ−sinϕ0sinϕcosϕ⎦⎤
(2)绕y轴旋转
θ
\theta
θ,其旋转矩阵为
Y
(
θ
)
=
[
c
o
s
θ
0
−
s
i
n
θ
0
1
0
s
i
n
θ
0
c
o
s
θ
]
Y(\theta)=\begin{bmatrix} cos\theta & 0 & -sin\theta \\ 0 & 1 & 0 \\ sin\theta & 0 & cos\theta \\ \end{bmatrix}
Y(θ)=⎣⎡cosθ0sinθ010−sinθ0cosθ⎦⎤
(3)绕z轴旋转
β
\beta
β,其旋转矩阵为
Z ( β ) = [ c o s β s i n β 0 − s i n β c o s β 0 0 0 1 ] Z(\beta)=\begin{bmatrix} cos\beta & sin\beta & 0 \\ -sin\beta & cos\beta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} Z(β)=⎣⎡cosβ−sinβ0sinβcosβ0001⎦⎤
参考坐标系
参考坐标系为雷达在空间中的坐标系,一般认为是北-天-东坐标系,X轴对应北,Y轴对应天,Z轴对应东
弹体坐标系
在弹体坐标系中,以弹建立坐标系,坐标原点定义为导弹质心,X轴与弹体纵轴重合同时指向导弹弹头为正,Y轴垂直X轴且位于弹体的纵向对称平面指向上方,Z轴与X、Y轴所成平面满足右手坐标系。
若弹体坐标系与参考坐标系之间的俯仰角为
θ
\theta
θ、偏航角为
ϕ
\phi
ϕ、横滚角为
γ
\gamma
γ,逆时针旋转为正,则参考坐标系与弹体坐标系的旋转矩阵为
G
(
θ
、
ϕ
、
γ
)
=
[
c
o
s
θ
c
o
s
ϕ
s
i
n
θ
−
c
o
s
θ
s
i
n
ϕ
−
s
i
n
θ
c
o
s
ϕ
c
o
s
γ
+
s
i
n
ϕ
s
i
n
γ
−
c
o
s
θ
c
o
s
γ
s
i
n
θ
s
i
n
ϕ
c
o
s
γ
+
c
o
s
ϕ
s
i
n
γ
s
i
n
θ
c
o
s
ϕ
s
i
n
γ
+
s
i
n
ϕ
c
o
s
γ
−
c
o
s
θ
s
i
n
γ
−
s
i
n
θ
s
i
n
ϕ
s
i
n
γ
+
c
o
s
ϕ
c
o
s
γ
]
G(\theta、\phi、\gamma)=\begin{bmatrix} cos\theta cos\phi & sin\theta & -cos\theta sin\phi \\ -sin\theta cos\phi cos\gamma + sin\phi sin\gamma & -cos\theta cos\gamma & sin\theta sin\phi cos\gamma + cos\phi sin\gamma\\ sin\theta cos\phi sin\gamma + sin\phi cos\gamma & -cos\theta sin\gamma & -sin\theta sin\phi sin\gamma + cos\phi cos\gamma \\ \end{bmatrix}
G(θ、ϕ、γ)=⎣⎡cosθcosϕ−sinθcosϕcosγ+sinϕsinγsinθcosϕsinγ+sinϕcosγsinθ−cosθcosγ−cosθsinγ−cosθsinϕsinθsinϕcosγ+cosϕsinγ−sinθsinϕsinγ+cosϕcosγ⎦⎤
天线坐标系
在天线坐标系中,以天线建立坐标系,坐标原点定义为天线中心,X轴与天线阵列平面垂直,指向外部为正,Y轴在天线纵向对称面内,垂直X轴且上方为正,Z轴与X、Y轴所成平面满足右手坐标系。
天线坐标系与天线伺服角度有关,若绕Y轴旋转
ψ
1
\psi_1
ψ1,绕Z轴旋转
ψ
2
\psi_2
ψ2,则天线坐标系与弹体坐标系的旋转矩阵为
G
(
ψ
1
、
ψ
2
)
=
[
c
o
s
ψ
1
c
o
s
ψ
2
s
i
n
ψ
2
−
s
i
n
ψ
1
c
o
s
ψ
2
−
c
o
s
ψ
1
s
i
n
ψ
2
c
o
s
ψ
2
s
i
n
ψ
1
s
i
n
ψ
2
s
i
n
ψ
1
0
c
o
s
ψ
1
]
G(\psi_1、\psi_2)=\begin{bmatrix} cos\psi_1 cos\psi_2 & sin\psi_2& -sin\psi_1 cos\psi_2 \\ -cos\psi_1 sin\psi_2 & cos\psi_2 & sin\psi_1 sin\psi_2\\ sin\psi_1 & 0 & cos\psi_1 \\ \end{bmatrix}
G(ψ1、ψ2)=⎣⎡cosψ1cosψ2−cosψ1sinψ2sinψ1sinψ2cosψ20−sinψ1cosψ2sinψ1sinψ2cosψ1⎦⎤
波束指向坐标系
在波束指向坐标系中,以波束指向建立坐标系,坐标原点定义为天线中心,X轴为天线波束指向,指向目标为正,Y轴垂直X轴,向上为正,Z轴与X、Y轴所成平面满足右手坐标系。
若方位向波束角为
θ
1
\theta_1
θ1,俯仰向波束角为
θ
2
\theta_2
θ2,则波束指向坐标系与天线坐标系的旋转矩阵为
G
(
θ
1
、
θ
2
)
=
[
c
o
s
θ
1
c
o
s
θ
2
s
i
n
θ
2
−
s
i
n
θ
1
c
o
s
θ
2
−
c
o
s
θ
1
s
i
n
θ
2
c
o
s
θ
2
s
i
n
θ
1
s
i
n
θ
2
s
i
n
θ
1
0
c
o
s
θ
1
]
G(\theta_1、\theta_2)=\begin{bmatrix} cos\theta_1 cos\theta_2 & sin\theta_2& -sin\theta_1 cos\theta_2 \\ -cos\theta_1 sin\theta_2 & cos\theta_2 & sin\theta_1 sin\theta_2\\ sin\theta_1 & 0 & cos\theta_1 \\ \end{bmatrix}
G(θ1、θ2)=⎣⎡cosθ1cosθ2−cosθ1sinθ2sinθ1sinθ2cosθ20−sinθ1cosθ2sinθ1sinθ2cosθ1⎦⎤