雷达坐标系之间的转换

22 篇文章 42 订阅
21 篇文章 31 订阅

旋转坐标系

(1)绕x轴旋转 ϕ \phi ϕ,其旋转矩阵为

X ( ϕ ) = [ 1 0 0 0 c o s ϕ s i n ϕ 0 − s i n ϕ c o s ϕ ] X(\phi)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\phi & sin\phi \\ 0 & -sin\phi & cos\phi \\ \end{bmatrix} X(ϕ)=1000cosϕsinϕ0sinϕcosϕ
(2)绕y轴旋转 θ \theta θ,其旋转矩阵为

Y ( θ ) = [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o s θ ] Y(\theta)=\begin{bmatrix} cos\theta & 0 & -sin\theta \\ 0 & 1 & 0 \\ sin\theta & 0 & cos\theta \\ \end{bmatrix} Y(θ)=cosθ0sinθ010sinθ0cosθ
(3)绕z轴旋转 β \beta β,其旋转矩阵为

Z ( β ) = [ c o s β s i n β 0 − s i n β c o s β 0 0 0 1 ] Z(\beta)=\begin{bmatrix} cos\beta & sin\beta & 0 \\ -sin\beta & cos\beta & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} Z(β)=cosβsinβ0sinβcosβ0001

参考坐标系

参考坐标系为雷达在空间中的坐标系,一般认为是北-天-东坐标系,X轴对应北,Y轴对应天,Z轴对应东

弹体坐标系

在弹体坐标系中,以弹建立坐标系,坐标原点定义为导弹质心,X轴与弹体纵轴重合同时指向导弹弹头为正,Y轴垂直X轴且位于弹体的纵向对称平面指向上方,Z轴与X、Y轴所成平面满足右手坐标系。
若弹体坐标系与参考坐标系之间的俯仰角为 θ \theta θ、偏航角为 ϕ \phi ϕ、横滚角为 γ \gamma γ,逆时针旋转为正,则参考坐标系与弹体坐标系的旋转矩阵为
G ( θ 、 ϕ 、 γ ) = [ c o s θ c o s ϕ s i n θ − c o s θ s i n ϕ − s i n θ c o s ϕ c o s γ + s i n ϕ s i n γ − c o s θ c o s γ s i n θ s i n ϕ c o s γ + c o s ϕ s i n γ s i n θ c o s ϕ s i n γ + s i n ϕ c o s γ − c o s θ s i n γ − s i n θ s i n ϕ s i n γ + c o s ϕ c o s γ ] G(\theta、\phi、\gamma)=\begin{bmatrix} cos\theta cos\phi & sin\theta & -cos\theta sin\phi \\ -sin\theta cos\phi cos\gamma + sin\phi sin\gamma & -cos\theta cos\gamma & sin\theta sin\phi cos\gamma + cos\phi sin\gamma\\ sin\theta cos\phi sin\gamma + sin\phi cos\gamma & -cos\theta sin\gamma & -sin\theta sin\phi sin\gamma + cos\phi cos\gamma \\ \end{bmatrix} G(θϕγ)=cosθcosϕsinθcosϕcosγ+sinϕsinγsinθcosϕsinγ+sinϕcosγsinθcosθcosγcosθsinγcosθsinϕsinθsinϕcosγ+cosϕsinγsinθsinϕsinγ+cosϕcosγ

天线坐标系

在天线坐标系中,以天线建立坐标系,坐标原点定义为天线中心,X轴与天线阵列平面垂直,指向外部为正,Y轴在天线纵向对称面内,垂直X轴且上方为正,Z轴与X、Y轴所成平面满足右手坐标系。
天线坐标系与天线伺服角度有关,若绕Y轴旋转 ψ 1 \psi_1 ψ1,绕Z轴旋转 ψ 2 \psi_2 ψ2,则天线坐标系与弹体坐标系的旋转矩阵为
G ( ψ 1 、 ψ 2 ) = [ c o s ψ 1 c o s ψ 2 s i n ψ 2 − s i n ψ 1 c o s ψ 2 − c o s ψ 1 s i n ψ 2 c o s ψ 2 s i n ψ 1 s i n ψ 2 s i n ψ 1 0 c o s ψ 1 ] G(\psi_1、\psi_2)=\begin{bmatrix} cos\psi_1 cos\psi_2 & sin\psi_2& -sin\psi_1 cos\psi_2 \\ -cos\psi_1 sin\psi_2 & cos\psi_2 & sin\psi_1 sin\psi_2\\ sin\psi_1 & 0 & cos\psi_1 \\ \end{bmatrix} G(ψ1ψ2)=cosψ1cosψ2cosψ1sinψ2sinψ1sinψ2cosψ20sinψ1cosψ2sinψ1sinψ2cosψ1

波束指向坐标系

在波束指向坐标系中,以波束指向建立坐标系,坐标原点定义为天线中心,X轴为天线波束指向,指向目标为正,Y轴垂直X轴,向上为正,Z轴与X、Y轴所成平面满足右手坐标系。
若方位向波束角为 θ 1 \theta_1 θ1,俯仰向波束角为 θ 2 \theta_2 θ2,则波束指向坐标系与天线坐标系的旋转矩阵为
G ( θ 1 、 θ 2 ) = [ c o s θ 1 c o s θ 2 s i n θ 2 − s i n θ 1 c o s θ 2 − c o s θ 1 s i n θ 2 c o s θ 2 s i n θ 1 s i n θ 2 s i n θ 1 0 c o s θ 1 ] G(\theta_1、\theta_2)=\begin{bmatrix} cos\theta_1 cos\theta_2 & sin\theta_2& -sin\theta_1 cos\theta_2 \\ -cos\theta_1 sin\theta_2 & cos\theta_2 & sin\theta_1 sin\theta_2\\ sin\theta_1 & 0 & cos\theta_1 \\ \end{bmatrix} G(θ1θ2)=cosθ1cosθ2cosθ1sinθ2sinθ1sinθ2cosθ20sinθ1cosθ2sinθ1sinθ2cosθ1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

突突突凸凸凸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值