1.成组设计一元定量资料t检验
1.1 问题与数据
例:一个小麦新品种经过6代选自,从第5代(A组)中抽出10株,株高为66、65、66、68、62、65、63、66、68、62(cm),又从第6代(B组)中抽出10株,株高为64、61、57、65、65、63、62、63、64、 60 (cm)。
问:株高性状是否已经达到稳定?
1.2 对数据结构的分析
在此例中,整个资料涉及2个组,每组随机抽取10个数据,测量指标为“株高”,故应属于“成组设计”,即资料类型为成组设计一元定量资料。
1.3 分析目的与统计分析方法的选择
该研究分析目的是考察2组之间的总体均值差别是否有统计学意义,因此统计分析应该属于成组设计定量资料的统计分析。若定量资料满足独立性、正态分布和方差齐性的要求,可进行成组设计一元定量资料t检验。此时,可求出该定量指标的总体平均值的95%置信区间;否则,应进行单组设计一元定量资料符号秩和检验。
1.4 SAS程序 和 重要内容的说明
DATA A; /*建立数据集*/
INPUT g$ n;
DO i=1 to n;
INPUT X @@;
OUTPUT;
END;
CARDS ; /*以下是输入数据*/
A 10
66 65 66 68 62 65 63 66 68 62
B 10
64 61 57 65 65 63 62 63 64 60
;
RUN;
PROC SORT;
BY g; RUN; /*以g作为分组变量排序*/
PROC UNIVARIATE NORMAL; /*调用单变量过程,进行正态性检验。选项normal 表示进行正态性检验*/
VAR X; BY g;
RUN;
PROC TTEST COCHRAN; /*进行t检验。选项cochran 表示输出cochran近似t检验的结果*/
CLASS g;
VAR x;
RUN;
1.5 主要分析结果及解释
首先查验正态性检验的结果,可知两组均符合正态分布(W分别为0.902418、 0.899644; P 分别为0.2329、0.2171, 均大于0.05)。
查验两组方差齐性检验的结果,可知两组总体方差相等 (F=1.31、 P=0.6902>0.05)
采用成组设计一元定量资料的 t检验 : t=2.57、 P=0.0193<0.05,两个平均值之间的差别有统计学意义。
结论:此小麦品种第5代平均株高高于第6代平均株高,株高性状没有达到稳定。
2.成组设计一元定量资料Wilcoxon秩和检验
2.1 问题与数据
例:
探讨正己烷职业接触人群生化指标特征,用气相色谱法检测受检者尿液2, 5- 己二酮浓度 (mg/L) , 为该人群的健康监护寻找动态观察依据。正己烷职业接触组 (A组) 为 广州市印刷行业彩印操作位作业人员64人,其均在同一个大的车间轮班工作,工作强度相当; 对照组 (B组) 选同厂其他车间工人53人。两组人员除接触正己烷因素不同外,生活水平、生活习惯、劳动强度、吸烟、饮酒情况基本相同。问:两组间尿液中 2,5-己二酮浓度(mg/L)平均含量之间的差别是否有统计学意义?数据如下所示。
正己烷职业接触组:
2.89、 1.85、 2.27、 2.07、1.62、 1.77、 2.53、2.02、 2.07、2.07、1.93、3.01、1.93、 1.88、 1.55、 1.36、2.23、 2.55、 1.73、 2.65、 1.95、 2.45、1.41、 2.46、2.38、 1.55、 2.16、 2.01、137、2.16、 2.00、 2.07、 2.57、2.11、2.37、1.39、 2.18、2.33、1.46、2.16、 2.03、2.96、 2.21、2.00、2.58、2.19、 2.41、 1.68、 1.93、 1.93、1.93、1.87、 1.74、 2.70、1.83、2.17、 2.52、 2.09、 2.28、 1.65、 1.19、 1.58、 0.89、1.65
对照组:
0.27、 0.36、0.26、0.16、0.49、 0.58、 0.16、0.45、 0.22、 0.25、0.66、 0.05、 0.31、0.12、0.51、0.30、0.37、0.14、0.28、 0.33、0.36、 0.51、0.37、0.36、 0.47、 0.34、0.2、0.39、 0.55 、0.17、 0.27、0.33、0.30、0.26、 0.50、0.17、0.22、0.18、0.17、0.62、0.27、0.26、0.34、0.17、0.61、0.42、 0.39、0.28、0.36、0.43、 0.24、 0.15、0.19
2.2 对数据结构的分析
在此例中,整个资料涉及两个组,观测指标为“尿液2,5-己二酮浓度(mg/L)”, 故应属于“成组设计(或单因素两水平设计)”,即资料类型为成组设计一元定量资料。
2.3 分析目的与统计分析方法选择
该研究分析目的是考察两个组之间的总体均值差别是否有统计学意义,因此统计分析应该属于成组设计定量资料的统计分析。若定量资料满足独立性、正态分布和方差齐性的要求,可进行成组设计一元定量资料t检验。此时,可求出该定量指标的总体平均值的95%置信区间; 否则,应进行单组设计一元定量资料符号秩和检验。本例经过检验不符合参数检验的前提条件,故应选择非参数检验法,即秩和检验。
2.4 SAS程序 和 重要内容的说明
DATA B; /*建立数据集*/
INPUT g$ n; /*以下是输入变量*/
DO i=1 to n;
INPUT X @@;
OUTPUT;
END;
CARDS; /*以下是输入数据*/
A 64
2.89 1.85 2.27 2.07 1.62 1.77
2.53 2.02 2.07 2.07 1.93 3.01 1.93
1.88 1.55 1.36 2.23 2.55 1.73
2.65 1.95 2.45 1.41 2.46 2.38
1.55 2.16 2.01 1.37 2.16 2.00
2.07 2.57 2.11 2.37 1.39 2.18
2.33 1.46 2.16 2.03 2.96 2.21
2.00 2.58 2.19 2.41 1.68 1.93
1.93 1.93 1.87 1.74 2.70 1.83 2.17
2.52 2.09 2.28 1.65 1.19 1.58
0.89 1.65
B 53
0.27 0.36 0.26 0.16 0.49 0.58
0.16 0.45 0.22 0.25 0.66 0.05
0.31 0.12 0.51 0.30 0.37 0.14 0.28
0.33 0.36 0.51 0.37 0.36 0.47 0.34
0.72 0.39 0.55 0.17 0.27 0.33 0.30
0.26 0.50 0.17 0.22 0.18 0.17 0.62
0.27 0.26 0.34 0.17 0.61 0.42 0.39
0.28 0.36 0.43 0.24 0.15 0.19
;
RUN;
PROC SORT;
BY g; /*以g作为分组变量排序*/
RUN;
PROC UNIVARIATE NORMAL; /*调用单变量过程,进行正态性检验,选项NORMAL表示进行正态性检验
*/
VAR X;
BY g;
RUN;
PROC TTEST COCHRAN; /*调用 TTEST 过程进行 t检验 、近似 t 检验,选项COCHRAN表示输出COCHRAN近似 t 检验的结果*/
CLASS g;
VAR X;
RUN;
PROC NPAR1WAY WILCOXON; /*进行秩和检验。选项 WILCOXON 表示只输出WILCOXON秩和检验的结果*/
CLASS g;
VAR X;
RUN;
2.5 主要分析结果及解释
上图是输入的数据集。
先查验正态性检验的结果,可知两组均符合正态分布,( W 值分别为0.992748、0.963328; P 值分别为0.9714、 0.1030,均大于 0.05)。
两组方差齐性检验的结果是方差不齐(F=8.07,P<0.0001)(拒绝原假设)。故选用非参数检验的结果。
此例采用成组设计定量资料的秩和检验: Z=- 9.2850, P=0.0001, 在两组尿液中2,5-己二酮浓度平均含量之间的差别有统计学意义。
结论:在正己烷职业接触组尿液中 2, 5-己二酮平均浓度为2.04mg/L,对照组尿液中 2,5-己二酮平均浓度为0.33mg/L, 结合统计学结论可认为正已烷职业接触组尿液中 2,5-己二酮平均浓度高于对照组尿液中2, 5-己二酮平均浓度。
觉得有用的话,请动动手指点个赞哦(# ^ . ^ #)