windows系统更新nvidia 驱动, 并安装pytorch

windows系统更新nvidia 驱动, 并安装pytorch

1.更新前nvidia-smi

显示版本比较久

在这里插入图片描述

2.方法一:通过NVIDIA GeForce Experience自动更新

NVIDIA GeForce Experience是NVIDIA官方提供的一款软件,它不仅可以帮助用户优化游戏设置,还能自动检测并更新显卡驱动。以下是通过GeForce Experience升级显卡驱动的步骤:

第一步:下载并安装GeForce Experience:https://www.nvidia.cn/geforce/geforce-experience/download/

前往NVIDIA官方网站下载GeForce Experience,然后按照提示完成安装。

第二步:打开GeForce Experience软件安装完成后,打开GeForce Experience,可能需要登录NVIDIA账号。如果没有账号,可以选择创建一个。

第三步:检查驱动更新在GeForce Experience主界面,点击左侧的“驱动程序”标签,软件将自动检测当前显卡驱动的版本,并检查是否有可用的更新。

第四步:下载并安装更新如果有可用的更新,点击“下载”按钮。下载完成后,点击“快速安装”或“自定义安装”(推荐选择“自定义安装”,这样可以选择是否安装额外的组件)来开始安装过程。

在这里插入图片描述

3.方法二:官网下载

https://www.nvidia.cn/geforce/drivers/

下图可以看出也有2种方法:
1)第一种下载一个app然后自动更新,类似上面通过GeForce Experience更新驱动程序。

2)第二种方案,自己搜索对应的驱动程序然后手动安装

在这里插入图片描述

下载好后,安装即可。

无论哪种方法,选择Geforce Game Ready驱动程序

4.更新后nvidia-smi

在这里插入图片描述

5.更新后重启电脑

6.安装pytorch

从官网通过conda或者pip安装即可。
https://pytorch.org/get-started/previous-versions/

命令:
conda install pytorch2.5.0 torchvision0.20.0 torchaudio==2.5.0 pytorch-cuda=12.4 -c pytorch -c nvidia

要在Windows系统安装CUDA、NVIDIA驱动程序PyTorch,您可以按照以下步骤进行操作: 1. 安装NVIDIA驱动程序: - 访问NVIDIA官方网站(https://www.nvidia.com/Download/index.aspx)。 - 在“驱动程序下载”页面上,选择适用于您的GPU型号操作系统的最新驱动程序版本。 - 点击“搜索”按钮下载相应的驱动程序安装文件。 - 运行下载的驱动程序安装文件,按照安装向导的指示完成安装过程。 2. 安装CUDA工具包: - 访问NVIDIA官方网站(https://developer.nvidia.com/cuda-downloads)。 - 在“CUDA下载”页面上,选择适用于您的GPU型号操作系统的最新CUDA版本。 - 下载相应的CUDA安装文件。请确保选择与安装NVIDIA驱动程序版本兼容的CUDA版本。 - 运行下载的CUDA安装文件,按照安装向导的指示完成安装过程。在安装过程中,选择您希望安装的组件路径。 3. 配置环境变量: - 打开“控制面板”选择“系统安全”>“系统”>“高级系统设置”。 - 在弹出的对话框中,点击“环境变量”按钮。 - 在“系统变量”部分,找到名为“Path”的变量,点击“编辑”按钮。 - 在弹出的编辑对话框中,点击“新建”按钮,添加CUDANVIDIA安装路径(例如:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\binC:\Program Files\NVIDIA Corporation\NVSMI)。 - 确认保存所有更改。 4. 安装PyTorch: - 打开Anaconda Navigator(如果您已经安装了Anaconda)或者打开命令提示符。 - 创建一个新的虚拟环境(可选但推荐),使用以下命令: ``` conda create -n myenv python=3.9 ``` 其中,myenv是您想要创建的虚拟环境的名称。 - 激活虚拟环境,使用以下命令: ``` conda activate myenv ``` - 安装PyTorch,使用以下命令(具体命令根据您的CUDA版本PyTorch版本进行调整): ``` conda install pytorch torchvision torchaudio cudatoolkit=xx.x -c pytorch ``` 其中,xx.x是您安装的CUDA版本。 完成上述步骤后,您应该成功安装NVIDIA驱动程序、CUDA工具包PyTorch。您可以在Python中导入PyTorch开始使用GPU进行深度学习任务。 请注意,在安装过程中,确保选择与您的GPU型号、操作系统其他依赖项兼容的正确版本。 希望这些步骤对您有所帮助!如果您遇到任何问题,请提供详细的错误消息问题描述,以便我们能够更好地帮助您。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值