10.Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution(2020)
深度神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的非线性映射函数,在图像超分辨率(SR)方面表现出了良好的性能。然而,现有的SR方法有两个潜在的限制。
首先,学习从LR到HR图像的映射函数通常是一个不适定问题,因为存在无限的HR图像可以降采样到相同的LR图像。因此,可能的函数的空间可能非常大,这使得很难找到一个好的解决方案。
其次,成对的LR-HR数据在现实应用程序中可能不可用,而且潜在的退化方法通常是未知的。对于这种更一般的情况,现有的SR模型经常导致自适应问题,并产生较差的性能。
为了解决上述问题,我们提出了一种对偶回归方案,通过对LR数据引入一个额外的约束,以减少可能的函数的空间。
看下图,是一个Unet网络,unet不同size的阶段也建立一些约束