图像超分辨率:Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

本文探讨了深度神经网络在单图像超分辨率中的局限性,尤其是不适定问题和缺乏成对数据的情况。作者提出了双回归网络,通过在LR数据上添加约束来缩小可能的函数空间,改善了模型的性能。文中展示了Unet网络的应用及其在约束下的优化效果。
摘要由CSDN通过智能技术生成

10.Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution(2020)

深度神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的非线性映射函数,在图像超分辨率(SR)方面表现出了良好的性能。然而,现有的SR方法有两个潜在的限制。

首先,学习从LR到HR图像的映射函数通常是一个不适定问题,因为存在无限的HR图像可以降采样到相同的LR图像。因此,可能的函数的空间可能非常大,这使得很难找到一个好的解决方案。

其次,成对的LR-HR数据在现实应用程序中可能不可用,而且潜在的退化方法通常是未知的。对于这种更一般的情况,现有的SR模型经常导致自适应问题,并产生较差的性能。

为了解决上述问题,我们提出了一种对偶回归方案,通过对LR数据引入一个额外的约束,以减少可能的函数的空间。
看下图,是一个Unet网络,unet不同size的阶段也建立一些约束
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值