图形学初识--矩阵和向量

前言

前面发布的【图形学初识】系列文章,坐标基本上都指代屏幕空间的二维坐标,迟迟没有进入真正的3维世界。为了真正进入三维世界,就需要存在一种工具将三维坐标映射为二维坐标,这个工具就涉及到数学中的线性代数中的一些概念,如:矩阵、向量、行列式等等!本章节就针对这些概念和相关计算做说明!

正文

向量

什么是向量?

概念:向量的相对概念是标量,以下是两者的对比:

向量: 既有大小,又有方向;

标量: 只有大小,没有方向;

举个例子:

向量: 速度、加速度、力等

标量: 颜色、温度、质量等

基本表示: a ⃗ = A B ⃗ = B − A \vec{a} = \vec{AB} = B - A a =AB =BA 。一个不太准确,但又十分形象的图形表示如下图:

在这里插入图片描述

a ⃗ \vec{a} a 大小:AB之间的距离

a ⃗ \vec{a} a 的方向:A指向B的这个方向

三维空间下,假设 A = ( x 0 , y 0 , z 0 ) , B = ( x 1 , y 1 , z 1 ) A = (x_0, y_0, z_0),B = (x_1, y_1, z_1) A=(x0,y0,z0)B=(x1,y1,z1),则 A B ⃗ = B − A = ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) \vec{AB} = B - A = (x_1 - x_0, y_1 - y_0, z_1 - z_0) AB =BA=(x1x0,y1y0,z1z0)

本质上,上述的坐标表示法,其实是针对三维空间正交向量基的i、j、k的加权组合,但是因为目前还没有讲向量乘法、向量加法,所以没法解释,可以直观的认为就是这样做!

向量涉及哪些常见计算?

1、取模

假设 A = ( x 0 , y 0 , z 0 ) , B = ( x 1 , y 1 , z 1 ) , A B ⃗ = ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) A = (x_0,y_0,z_0),B=(x_1,y_1,z_1), \vec{AB} = (x_1-x_0,y_1-y_0,z_1-z_0) A=(x0,y0,z0)B=(x1,y1,z1),AB =(x1x0,y1y0,z1z0),记 ∥ A B ⃗ ∥ \|\vec{AB}\| AB A B ⃗ \vec{AB} AB 模,本质就是向量的长度

计算公式如下:
∥ A B ⃗ ∥ = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 + ( z 1 − z 0 ) 2 \|\vec{AB}\| = \sqrt{(x_1-x_0)^2 + (y_1-y_0)^2 + (z_1-z_0)^2} AB =(x1x0)2+(y1y0)2+(z1z0)2

2、归一化

假设 A = ( x 0 , y 0 , z 0 ) , B = ( x 1 , y 1 , z 1 ) , A B ⃗ = ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) A = (x_0,y_0,z_0),B=(x_1,y_1,z_1), \vec{AB} = (x_1-x_0,y_1-y_0,z_1-z_0) A=(x0,y0,z0)B=(x1,y1,z1),AB =(x1x0,y1y0,z1z0),记 A B ^ \hat{AB} AB^ A B ⃗ \vec{AB} AB 的归一化向量

归一化本质:计算一个方向不变,长度变为1的对应向量

计算公式如下:
A B ^ = A B ⃗ ∥ A B ⃗ ∥ \hat{AB} = \frac{\vec{AB}}{\|\vec{AB}\|} AB^=AB AB

3、向量加法

假设 a ⃗ = ( x 0 , y 0 , z 0 ) , b ⃗ = ( x 1 , y 1 , z 1 ) \vec{a} = (x_0,y_0,z_0),\vec{b} =(x_1,y_1,z_1) a =(x0,y0,z0)b =(x1,y1,z1) 那么 c ⃗ = a + b ⃗ = ( x 1 + x 0 , y 1 + y 0 , z 1 + z 0 ) \vec{c} = \vec{a + b} = (x_1+x_0,y_1+y_0,z_1+z_0) c =a+b =(x1+x0,y1+y0,z1+z0)

代数解释:对应坐标相加

几何解释:

(1)两向量移动到统一起点,构成平行四边形,副对角线即为加和结果

在这里插入图片描述

(2)把b向量移动到a向量的末尾,从a起点连接b终点,得到的向量即为加和结果

在这里插入图片描述

4、向量减法

假设 a ⃗ = ( x 0 , y 0 , z 0 ) , b ⃗ = ( x 1 , y 1 , z 1 ) \vec{a} = (x_0,y_0,z_0),\vec{b} =(x_1,y_1,z_1) a =(x0,y0,z0)b =(x1,y1,z1) 那么 c ⃗ = b − a ⃗ = ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) \vec{c} = \vec{b - a} = (x_1-x_0,y_1-y_0,z_1-z_0) c =ba =(x1x0,y1y0,z1z0)

代数解释:对应坐标相减

几何解释:向量a的末端连接向量b末端的一个新向量

在这里插入图片描述

5、向量与标量乘

假设 a ⃗ = ( x 0 , y 0 , z 0 ) \vec{a} = (x_0,y_0,z_0) a =(x0,y0,z0) 那么 c ⃗ = k a ⃗ = ( k x 0 , k y 0 , k z 0 ) \vec{c} = k\vec{a} = (kx_0,ky_0,kz_0) c =ka =(kx0,ky0,kz0)

代数解释:对应坐标乘标量k

几何解释:当 k   ! = 0 k\ !=0 k !=0,向量等比例调整长度,k为缩放比例

在这里插入图片描述

6、向量点乘(内积)

假设 a ⃗ = ( x 0 , y 0 , z 0 ) , b ⃗ = ( x 1 , y 1 , z 1 ) \vec{a} = (x_0,y_0,z_0),\vec{b} =(x_1,y_1,z_1) a =(x0,y0,z0)b =(x1,y1,z1) 那么记点乘 c ⃗ = a ⃗ ⋅ b ⃗ = x 1 x 0 + y 1 y 0 + z 1 z 0 \vec{c} = \vec{a} \cdot \vec{b} = x_1x_0 + y_1y_0+z_1z_0 c =a b =x1x0+y1y0+z1z0​​

注意:点乘的结果是一个标量

代数解释:对应坐标相乘然后相加

几何解释: a ^ ⋅ b ^ = ∥ a ⃗ ∥ ∥ b ⃗ ∥ cos ⁡ θ \hat a \cdot \hat b = \|\vec{a}\|\|\vec{b}\|\cos \theta a^b^=a ∥∥b cosθ, 如下图所示

在这里插入图片描述

7、向量投影

假设 a ⃗ = ( x 0 , y 0 , z 0 ) , b ⃗ = ( x 1 , y 1 , z 1 ) \vec{a} = (x_0,y_0,z_0),\vec{b} =(x_1,y_1,z_1) a =(x0,y0,z0)b =(x1,y1,z1) 那么记 a ⃗ \vec a a b ⃗ \vec b b 上的投影为 a p r j b ⃗ \vec{a_{prjb}} aprjb ​ ,计算公式如下:

在这里插入图片描述

a p r j b ⃗ = b ^ ∗ ∥ a ⊥ ⃗ ∥ = b ⃗ ∥ b ⃗ ∥ ∗ cos ⁡ θ ∗ ∥ a ⃗ ∥ = b ⃗ ∥ b ⃗ ∥ ∗ a ⃗ ⋅ b ⃗ ∥ a ⃗ ∥ ∥ b ⃗ ∥ ∗ ∥ a ⃗ ∥ = a ⃗ ⋅ b ⃗ ∥ b ⃗ ∥ 2 b ⃗ \begin{align} \vec{a_{prjb}} &= \hat b * \|\vec{a_{\perp}}\|\\ &=\frac{\vec b}{\|\vec b\|} * \cos \theta * \|\vec a\|\\ &=\frac{\vec b}{\|\vec b\|} * \frac{\vec a \cdot \vec b}{\|\vec a\| \|\vec b\|} * \|\vec a\|\\ &=\frac{\vec a \cdot \vec b}{\|\vec b\|^2}\vec b \end{align} aprjb =b^a =b b cosθa =b b a ∥∥b a b a =b 2a b b

假设被投影的向量为单位向量,则结果可以简化: a p r j b ⃗ = ( a ⃗ ⋅ b ⃗ )   b ⃗ \vec{a_{prjb}} = (\vec a \cdot \vec b)\ \vec b aprjb =(a b ) b

向量有哪些基本应用?

(1)判断两向量是否同向(重要)

在这里插入图片描述

利用向量点乘的结果判断,如果结果为负数,则不是同向,如果结果为正数,则同向。

(2)计算投影

​ 略(上述已给出计算公式)

(3)计算夹角

​ 略(也是利用点乘,计算 cos ⁡ θ \cos \theta cosθ,从而计算出夹角)

矩阵

什么是矩阵?

矩阵本质就是一个二维数组,有行、有列,其中存储许多数字,每个数字叫做矩阵的元素。第i行、j列的记作 a i j a_{ij} aij,当行和列相等时,我们叫做方阵!

如下图就是3x3的方阵,,我们常记作矩阵为 M M M
[ 10 12 30 − 1 3 0 2 96 123 ] \begin{bmatrix} 10 & 12 & 30 \\ -1 & 3 & 0 \\ 2 & 96 & 123\\ \end{bmatrix} 101212396300123

当方阵的只有主对角线元素为1,其余所有元素为0,我们记矩阵为单位矩阵,记 I n I_n In,如下图:
[ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} 100010001

矩阵涉及哪些常见计算?

1、矩阵加法

前提:两矩阵行列数相同

计算规则:对应元素相加

2、矩阵减法

前提:两矩阵行列数相同

计算规则:对应元素相减

3、矩阵乘法

前提:矩阵 A A A 左乘矩阵 B B B ,要求A的列数与B的行数相同

计算规则:假设矩阵 C C C 的每个元素为 c i j c_{ij} cij ,矩阵 A A A的每个元素为 a i j a_{ij} aij ,矩阵 B B B的每个元素为 b i j b_{ij} bij ,如果 C = A B C = AB C=AB

C C C的每个元素:
c i j = ( a i 0 a i 1 a i 2 . . . a i n ) ⋅ ( b 0 j b 1 j b 2 j . . . b n j ) c_{ij} = \begin{pmatrix} a_{i0}\\ a_{i1}\\ a_{i2}\\ ...\\ a_{in}\\ \end{pmatrix} \cdot \begin{pmatrix} b_{0j}\\ b_{1j}\\ b_{2j}\\ ...\\ b_{nj}\\ \end{pmatrix} cij= ai0ai1ai2...ain b0jb1jb2j...bnj
给个示例图:

在这里插入图片描述

几个常见的乘法性质:

( A B ) C = A ( B C ) A ( B + C ) = A B + A C ( A + B ) C = A C + B C (AB)C = A(BC)\\ A(B+C) = AB + AC\\ (A+B)C = AC + BC (AB)C=A(BC)A(B+C)=AB+AC(A+B)C=AC+BC

注意: 矩阵乘法没有交换律,一般来说: A B   ! = B A AB\ != BA AB !=BA

4、矩阵和向量乘法

我们可以将向量理解为列或者行为1的矩阵,这样问题就转化为矩阵的乘法类似,不多赘述!

如下图:

在这里插入图片描述

矩阵有哪些基本应用?

无所不能,在图形学领域最重要的概念就是MVP变换,本质上就是对应三个矩阵!这方面内容会在后面章节详细讲解哦!大家拭目以待!

结尾:喜欢的小伙伴可以点点关注+赞哦

希望对各位小伙伴能够有所帮助哦,永远在学习的道路上伴你而行, 我是航火火,火一般的男人!

  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值