YOLOv8自动驾驶 集成车道线检测 性能提升

YOLOv8自动驾驶系统中集成车道线检测的性能提升方案,从算法优化到工程实现的全方位改进策略:


一、算法层面优化

1. 混合检测架构

python

class HybridLaneDetector:
    def __init__(self):
        self.yolo = YOLO('yolov8n-seg.pt')  # 分割模型
        self.traditional = TraditionalLaneDet()
        
    def detect(self, frame):
        # YOLOv8语义分割辅助
        seg_results = self.yolo(frame, task='segment')
        road_mask = seg_results[0].masks[0].xy[0]
        
        # 传统方法在道路区域内检测
        masked_img = cv2.bitwise_and(frame, frame, mask=road_mask)
        lanes = self.traditional.detect(masked_img)
        
        return refine_lanes(lanes)

优势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值