YOLOv8自动驾驶系统中集成车道线检测的性能提升方案,从算法优化到工程实现的全方位改进策略:
一、算法层面优化
1. 混合检测架构
python
class HybridLaneDetector:
def __init__(self):
self.yolo = YOLO('yolov8n-seg.pt') # 分割模型
self.traditional = TraditionalLaneDet()
def detect(self, frame):
# YOLOv8语义分割辅助
seg_results = self.yolo(frame, task='segment')
road_mask = seg_results[0].masks[0].xy[0]
# 传统方法在道路区域内检测
masked_img = cv2.bitwise_and(frame, frame, mask=road_mask)
lanes = self.traditional.detect(masked_img)
return refine_lanes(lanes)
优势: