【ROS2】ROS节点启动崩溃:rclcpp::exceptions::RCLInvalidArgument

116 篇文章 ¥69.90 ¥99.00

【ROS】郭老二博文之:ROS目录

1、问题描述

启动ROS节点时,直接崩溃,打印信息如下:

terminate called after throwing an instance of 'rclcpp::exceptions::RCLInvalidArgument'
  what():  failed to create guard condition: context argument is null, at ./src/rcl/guard_condition.c:65
[ros2run]: Aborted

2、原因分析

1) ROS2 未初始化
在使用 rclcpp接口

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
<think>好的,用户想知道如何在ROS2中使用C++调用其他节点的参数。首先,我需要回顾一下ROS2中参数服务的基本机制。ROS2的参数系统允许节点公开自己的参数,并通过参数服务进行管理。每个节点都有自己的参数服务器,其他节点可以通过参数客户端来访问或修改这些参数。 根据用户提供的引用内容,特别是引用[2],里面提到了参数服务端和客户端的C++配置。这应该涉及到创建参数服务端来声明参数,以及参数客户端来获取或设置参数。用户需要的是如何从一个节点调用另一个节点的参数,所以需要明确参数客户端的实现方法。 首先,参数服务端需要声明参数并允许其他节点访问。引用[2]中的服务端代码可能类似demo01_param_server.cpp,其中节点声明参数并通过参数接口发布。然后,客户端节点需要创建参数客户端实例,连接到目标节点的参数服务,然后调用获取参数的方法。 接下来要考虑的是如何正确构造参数客户端。在ROS2中,参数客户端属于rclcpp::SyncParametersClient类,需要指定目标节点名称。例如,如果目标节点名为"target_node",那么客户端应初始化为rclcpp::SyncParametersClient(this, "target_node")。然后使用get_parameter方法来获取参数值。 需要确保客户端和服务端在同一个ROS2网络中,并且目标节点确实存在并已经声明了参数。此外,参数客户端可能需要等待服务端可用,可以使用wait_for_service方法或循环检查确保连接成功。 示例代码方面,服务端可能像这样声明参数: ```cpp // 参数服务端 this->declare_parameter("param_name", default_value); ``` 客户端则需要创建参数客户端并调用: ```cpp auto parameters_client = std::make_shared<rclcpp::SyncParametersClient>(this, "target_node"); if (parameters_client->wait_for_service(std::chrono::seconds(1))) { auto param_value = parameters_client->get_parameter<T>("param_name"); } ``` 但需要处理可能的异常,比如服务未启动或参数不存在。同时,需要正确配置CMakeLists.txt,添加依赖和可执行文件,如引用[2]中的配置。 用户可能需要一个完整的示例,包括服务端和客户端的代码,以及编译运行的步骤。此外,要提醒用户注意节点命名空间和命名,确保客户端能正确找到目标节点。参数类型也需要匹配,否则会出错。 最后,验证示例的正确性,确保参数能够被正确获取。可能还需要解释参数同步和异步的区别,但在用户的问题中,同步方法可能足够。综上,给出一个分步骤的教程,包含代码示例和必要的说明,应该能满足用户的需求。</think>在ROS2中通过C++调用其他节点的参数,主要依赖参数客户端与服务端的交互机制。以下是实现步骤和示例代码: --- ### 一、参数服务端配置 **目标节点**需要先声明可访问的参数: ```cpp // demo01_param_server.cpp #include "rclcpp/rclcpp.hpp" class ParamServer : public rclcpp::Node { public: ParamServer() : Node("param_server_node") { // 声明两个示例参数 this->declare_parameter("motor_speed", 1500); this->declare_parameter("sensor_enabled", true); } }; int main(int argc, char** argv) { rclcpp::init(argc, argv); rclcpp::spin(std::make_shared<ParamServer>()); rclcpp::shutdown(); return 0; } ``` --- ### 二、参数客户端配置 **调用节点**通过`SyncParametersClient`访问参数: ```cpp // demo02_param_client.cpp #include "rclcpp/rclcpp.hpp" class ParamClient : public rclcpp::Node { public: ParamClient() : Node("param_client_node") { // 创建参数客户端,指向目标节点 auto parameters_client = std::make_shared<rclcpp::SyncParametersClient>( this, "param_server_node"); // 目标节点名称 // 等待服务端就绪 while (!parameters_client->wait_for_service(1s)) { RCLCPP_INFO(this->get_logger(), "等待参数服务端启动..."); } // 获取参数值 try { auto motor_speed = parameters_client->get_parameter<int>("motor_speed"); auto sensor_flag = parameters_client->get_parameter<bool>("sensor_enabled"); RCLCPP_INFO(this->get_logger(), "电机速度: %d | 传感器状态: %s", motor_speed.as_int(), sensor_flag.as_bool() ? "启用" : "禁用"); } catch (const rclcpp::exceptions::ParameterUninitializedException& e) { RCLCPP_ERROR(this->get_logger(), "参数未初始化: %s", e.what()); } } }; int main(int argc, char** argv) { rclcpp::init(argc, argv); rclcpp::spin(std::make_shared<ParamClient>()); rclcpp::shutdown(); return 0; } ``` --- ### 三、编译配置 在`CMakeLists.txt`中添加依赖和可执行文件: ```cmake find_package(rclcpp REQUIRED) add_executable(param_server src/demo01_param_server.cpp) ament_target_dependencies(param_server "rclcpp") add_executable(param_client src/demo02_param_client.cpp) ament_target_dependencies(param_client "rclcpp") install(TARGETS param_server param_client DESTINATION lib/${PROJECT_NAME}) ``` --- ### 四、运行验证 1. 启动参数服务端 ```bash ros2 run your_package param_server ``` 2. 启动参数客户端 ```bash ros2 run your_package param_client ``` 3. 预期输出: ``` [param_client_node] 电机速度: 1500 | 传感器状态: 启用 ``` --- ### 关键点说明 1. **节点匹配**:客户端构造时需指定目标节点的名称`param_server_node`[^2] 2. **异常处理**:捕获`ParameterUninitializedException`防止参数未声明导致的崩溃 3. **同步机制**:使用`SyncParametersClient`简化异步等待逻辑 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭老二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值