漫步微积分四——导数的定义

从几何上考虑,我们利用上一篇博文中的(8),并丢掉下标 x0 ,就得到导数的基本定义:给定任意函数 f(x) ,导数 f(x) 是新的函数,在点 x 处的值定义为

f(x)=limΔx0f(x+Δx)f(x)Δx(1)
在计算它的极限时, x 是固定的,而Δx是变化的且接近于零。某些 x 存在极限值,某些却不存在。如果x=a的极限值存在,就说函数在点 a 处可导。如果一个函数在其定义域内的每个点均可导,那么该函数是可导函数。这本书讨论的大部分函数都有此性质。

我们知道f(x)可以像图1那样可视化,在图中 f(x) 是曲线上动点 P 的高度。然而,严格意义上讲,上述的导数定义不依赖于任何几何想法。图1构成一种几何解释,对理解导数来说非常重要,可以作为一种辅助手段,但它不是导数概念的基本组成部分。下一节我们将看到其他与几何无关的解释,那些解释跟几何解释同等重要。因此,我们必须将f(x)作为纯粹的函数,并且需要认识到它有多种解释,但与其中任何之一都没有必要的联系。


这里写图片描述
图1

实际上形成导数 f(x) 的过程称为给定函数 f(x) 的微分。这是微积分的基本运算,其他一切依赖于此。原则上,我们遵循(1)中指定的计算说明。这些说明可以整理为一个系统的过程,叫做三步法。

第一步:写出函数的差 f(x+Δx)f(x)
第二步:除以 Δx 得到差商的形式

f(x+Δx)f(x)Δx

大部分问题只涉及分子分母消去 Δx
第三步:估计 Δx0 时的极限值。如果第二步已经完成了,那么该步可以作为简单的检查。

如果我们记得符号 f(x) 几乎包含了所有可以想象到的函数,那么我们将了解到这些步骤有时容易,有时很难。下面的示例只涉及初等代数,但即使如此,还是需要一点知识和技巧。

例1:对函数 f(x)=x3 f(x)
第一步:

f(x+Δx)f(x)====(x+Δx)3x3x3+3x2Δx+3xΔx2+Δx3x33x2Δx+3xΔx2+Δx3Δx(3x+3xΔx+Δx2)

第二步:
f(x+Δx)f(x)Δx=3x+3xΔx+Δx2

第三步:
f(x)=limΔx0[3x+3xΔx+Δx2]=3x2

例2:对函数 f(x)=1/x f(x)
第一步:
f(x+Δx)f(x)==1(x+Δx)1xx(x+Δx)x(x+Δx)=Δxx(x+Δx)

第二步:
f(x+Δx)f(x)Δx=1x(x+Δx)

第三步:
f(x)=limΔx01x(x+Δx)=1x2

让我们简要地分析一下例2的结果告诉了我们哪些关于函数 y=f(x)=1/x 图像的信息。首先,多所有 x0 f(x)=1/x2 为负值,而且由于这是切线的斜率,所有切线斜向右下方。更进一步,当 x 接近0时, f(x) 非常大,这意味着切线非常陡峭的;而当 x 很大时,f(x)非常小,所以切线是趋近水平的。通过测试图来验证我们的观察时很有启发意义的。一般来说,导数能够告诉我们许多函数的行为以及图像的性质,因为某点的导数给出的了该点的切线斜率。我们之后会更加充分的探讨这一主题。

例3:对函数 f(x)=x f(x)
第一步:

f(x+Δx)f(x)=(x+Δx)x

第二步:
f(x+Δx)f(x)Δx=(x+Δx)xΔx

这种形式不方便取消 Δx ,所以我们用一个巧妙的代数技巧去除分子中的平方根。分子和分母均乘以 x+Δx+x ,这就相当于分数乘以 1 ,然后我们使用代数式(ab)(a+b)=a2b2进行简化:
f(x+Δx)f(x)Δx===x+ΔxxΔxx+Δx+xx+Δx+x(x+Δx)xΔx(x+Δx+x)1x+Δx+x

现在第三步就容易了。
第三步:
f(x)=limΔx01x+Δx+x=1x+x=12x

符号的一些说明

微积分有个令人困惑的特点,就是几个不同的符号都可以用来表示微分,符号的使用带有某种偏好,通过环境来选择相应的符号。可能有人会问,使用这些符号有什么问题吗?事实是,问题很大,好的符号可以铺平道路,为我们做许多工作,而不好的类似于沼泽,很难轻松移动。

函数 f(x) 的导数上文表示为 f(x) 。这个符号的优点在于强调 f(x) 的导数是关于 x 的另一个函数,它与给定函数以某种方式关联起来。如果我们给出的函数形式为y=f(x),即用一个独立变量来表示,那么更短的符号 y 常用来代替 f(x)

用这种符号来表示导数最大的缺点是它没有显示出 f(x) 得到 f(x) 过程。从这个层面考虑莱布尼兹设计的符号更好,当然在其他方面也不错。

下面解释莱布尼兹的符号,对一个函数 y=f(x) ,它的差商形式

f(x+Δx)f(x)Δx

可以记为
ΔyΔx

其中 Δy=f(x+Δx)f(x) Δy 不是 y 的一个任意变化量;而是x变为 x+Δx 时特定的变化量。我们知道,差商可以理解为 y,x 变化量之比,就是割线的斜率(图2)。莱布尼兹写出差商的极限形式,也就是导数 f(x) 。用这个符号表示的话,导数的定义就变为
dydx=limΔx0ΔyΔx(2)

这就是图2中割线的斜率。 dy/dx 有两种不同的等价形式
df(x)dxddxf(x)

对第二种形式,可以将 d/dx 看作一个运算,对函数 f(x) 运算得到它的导数 f(x)
ddxf(x)=f(x)


这里写图片描述
图2

有一点非常重要,(2)中 dy/dx 是一个不可分割的符号。尽管书写形式上看可以,但是它不是平常意义上的两个变量 dy dx 的商,因为他们没有定义,而且无法单独存在。在莱布尼兹的符号中,(2)中右边的极限形式象征性的用 Δ 来代替字母 d 。从这个角度来说,导数的符号dy/dx提醒我们差商 Δy/Δx 以及 Δx0 时计算极限的过程。从计算角度考虑也是有利的。当用莱布尼兹的符号时,许多基本的公式很容易被记住。

这个符号虽然好,但时也不完美。例如,加入我们要写出某个点的导数值,像 x=3 。因为 dy/dx 没有像 f(x) 那样很方便的显示变量 x ,我们不得不用些难看的符号

(dydx)x=3dydxx=3

清晰明了的符号 f(3) 明显比笨拙的表达时要占优势。

正如我们所看到的,上面的每种表达式各有各的优点。他们都广泛应用于科学和数学文献中,为了彻底熟悉他们,我们应该经常使用并且在他们之间自由的转换。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值