漫步数学分析二十六——积分方程与不动点

在许多物理问题中,我们会遇到积分方程;他们的形式如下

f(x)=a+x0k(x,y)f(y)dy(1)

其中 a=f(0),k 已经给定,我们假设 k 是连续的。

例如f(x)=aex就是微分方程 df/dx=f(x) 的解,而微分方程与

f(x)=a+x0f(y)dy

是一样的。

我们可以用Arzela-Ascoli定理来分析方程1,然而目前我们只考虑满足某些特殊假设的情况,这样的话下面的定理就是可用的。

10 (压缩映射原理(Contraction Mapping Principle))令 T:b(A,Rm)b(A,Rm) 是一个给定的映射,且满足存在一个常数 λ,0λ<1 使得对所有的 f,gb(A,Rm)

T(f)T(g)λfg

那么 T 有一个唯一的不动点(fixed point);即存在唯一的一个点f0b(A,Rm)使得 T(f0)=f0

注意:这个证明对任何完备度量空间都是有效的,所有 T 的条件可以看成d(T(x),T(y))λd(x,y)。这样的映射 T 称为压缩(contraction);缩放因子为λ<1

证明的方法叫做逐次逼近(successive approximations),我们从任意的 fb 开始然后形成序列

f,T(f),T2(f)=T(T(f)),T3(f)=T(T(T(f))),

接下里我们说明这个序列是柯西序列,这样的话它就收收敛到 b 中并且极限函数就是要求的解。这个方法在构造上非常有用,我们可以逐次计算逼近序列的元素,另外如果我们从解出发,或者在迭代过程中幸运地遇到解的话,这个序列就停止了。

10 如果 supx[0,r]x0|k(x,y)|dy=λ<1 ,那么方程1在 [0,r] 上有唯一的解。

实际上,将 T(f) 定义成

T(f)(x)=a+x0k(x,y)f(y)dy

那么方程1的解就是 T 的不动点,反之亦然。为了应用定理10,我们必须确认T是一个压缩: T(f)T(g)λfg ,此时 A=[0,r],m=1 。接下来

T(f)T(g)=supx[0,r]|T(f)(x)T(g)(x)|=supx[0,r]x0k(x,y)[f(y)g(y)]dy(supx[0,r]x0|k(x,y)|dy)fg=λ|fg|

其中 |f(y)g(y)|fg 是一个常数,因此 T 是一个压缩,故有唯一的一个不动点,也就是要求的解。

随后我们会给出该方法更多的应用,目前我们需要认识到这个方法在微分与积分方程理论中非常重要。

1给出一个完备度量空间 X 与映射T:XX,该映射满足 d(T(x),T(y))d(x,y) 但是没有唯一不动点的实例。

X=R ,且满足通常的距离 d(x,y)=|xy| 。令 T(x)=x+1 ,显然,没有一个 x 满足x=x+1,但是 |T(x)T(y)|=|xy|

这个例子说明定理10中的 λ<1 是必不可少的, λ=1 不满足要求。

2 说明将逐次近似方法应用到 f(x)=1+x0f(y)dy 上将产生通常的形式 ex

我们首先从0开始,因为 T(g)=1+x0g(y)dy ,所以可得:

T(0)T2(0)=T(T(0))T(T2(0))T(T3(0))Tn(0)=1;=1+x0dy=1+x;=1+x0(1+y)dy=1+x+x22;=1+x0(1+y+y22)=1+x+x22+x33!;=1+x++xn1(n1)!

所以这个序列收敛到 ex

3 k(x,y)=xexy ,在哪个区间 [0,r] 上,文中的方法可以保证方程1有解?

估计 λ 并核对 λ<1

λ=supx[0,r]x0xexydy=supx[0,r](1ex2)=1er2

那么我们在任意区间 [0,r] 上可得到唯一解。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值