(X1,X2)是随机向量,假设我们知道(X1,X2)的联合分布而我们想求(X1,X2)变换的分布,假设为Y=g(X1,X2),我们通过得到Y的cdf即可去除。还有种方式是使用变换,考虑前面讲过的变换理论,本篇文章将其扩展到随机向量。最好的方式是分开讨论离散与连续的情况,我们首先讨论离散情况。
令pX1,X2(x1,x2)是两个离散随机变量X1,X2的联合pmf,pX1,X2>0的点集为S,即S是(X1,X2)的支撑。令y=u1(x1,x2),y2=u2(x1,x2)表示S到T的一对一变换,两个新随机变量Y1=u1(X1,X2),Y2=u2(X1,X2)为
pY1,Y2(y1,y2)={pX1,X2[w1(y1,y2),w2(y1,y2)]0(y1,y2)∈Telsewhere
其中x1=w1(y1,y2),x2=w2(y1,y2)是y1=u1(x1,x2),y2=u2(x1,x2)的单值逆,根据pY1,Y2(y1,y2)的联合pmf,我们通过对y2求和得到Y1的边缘pmf 或者对y1求和得到Y2的边缘pmf。
在变换变换方法中,需要强调的是我们需要两个新变量代替两个旧变量,下面给出实例。
例1:X1,X2的联合pmf为
pX1,X2(x1,x2)=μx11μx22e−μ1e−μ2x1!x2!,x1=0,1,2,3,…,x2=0,1,2,3,…
其他地方为零,其中μ1,μ2是确定的正实数,因此空间S是点(x1,x2)的集合,其中x1,x2均是非负实数,我们希望求出y1=X1+X2的pmf。如果我们使用变量代换,那么我们需要定义第二个随机变量Y2,因为我们对Y2不感兴趣,所以我们选择一种简单的一对一变换,例如取Y2=X2,那么y1=x1+x2,y2=x2表示将空间S映射到
T={y1,y2:y2=0,1,…,y1 y1=0,1,2,…}
的一对一变换。注意,如果(y1,y2)∈T,那么0≤y2≤y1,逆函数为x1=y1−y2,x2=y2,所以Y1,Y2的联合pmf为
pY1,Y2(y1,y2)=μy1−y21μy22e−μ1−μ2(y1−y2)!y2!,(y1,y2)∈T
其他地方为零。因此Y1的边缘pmf为
pY1(y1)=∑y2=0y1pY1,Y2(y1,y2)=e−μ1−μ2y1!∑y2=0y1y1!(y1−y2)!y2!μy1−y21μy22=(μ1+μ2)y1e−μ1−μ2y1!,y=0,1,2,…
其他地方为零。
对于连续情况,我们从实例开始讲解,
例2:考虑从单位正方形S={(x,y):0<x<1,0<y<1}中随机选择点(X,Y),假设我们感兴趣的既不在X中也不是Y中,而是在Z=X+Y中,因为是随机的,所以在单位正方形上的概率分布可以看成是均匀的,那么X,Y的pdf可以写成
fX,Y(x,y)={100<x<1,0<y<1elsewhere
它描述了概率模型。接下里Z的cdf表示成FZ=P(X+Y≤z),那么
FZ(z)=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪0∫z)∫z−x0dydx=z221−∫1z−1∫1z−xdydx=1−(2−z)221z<00≤z<11≤z<22≤z
因为对于所有的z值F′Z存在,所以Z的pmf可以写成
fZ(z)=⎧⎩⎨z2−z00<z<11≤z<2elsewhere
现在我们讨论连续情况的一般变换方法,(X1,X2)有联合连续分布,其pdf为fX1,X2(x1,x2),支撑集为S。假设随机变量Y1,Y2为Y1=u1(X1,X2),Y2=u2(X1,X2),其中函数y1=u1(x1,x2),y2=u2(x1,x2)定义了从集合S到T上的一对一变换,其中T是(Y1,Y2)的支撑。如果我们用y1,y2 来表示x1,x2,那么我们可以写成x1=w1(y1,y2),x2=w2(y1,y2),行列式
J=∣∣∣∣∣∣∂x1∂y1∂x2∂y1∂x1∂y2∂x2∂y2∣∣∣∣∣∣
称为变换的雅克比,用符号J表示,假设这些一阶偏导是连续的并且雅克比J 不等于T中的零。
利用分析中的定理,我们能找出(Y1,Y2)的联合pdf,令A是S 的子集,B表示一对一变换A的映射(如图1)
图1
因为变换是一对一的,所以事件{(X1,X2)∈A},{(Y1,Y2)∈B}是等价的,故
P[(Y1,Y2)∈B]=P[(X1,X2)∈A]=∫∫AfX1,X2(x1,x2)dx1dx2
我们想用y1=u1(x1,x2),y2=u2(x1,x2)或者x1=w1(y1,y2),x2=w2(y1,y2)替换积分变量,那么根据分析中的知识可得
∫∫A=fX1,X2(x1,x2)dx1dx2=∫∫BfX1,X2[w1(y1,y2),w2(y1,y2)]|J|dy1dy2
因此,对于T中的每个集合B
P[(Y1,Y2)∈B]=∫∫BfX1,X2[w1(y1,y2),w2(y1,y2)]|J|dy1dy2
这表明Y1,Y2的联合pdffY1,Y2(y1,y2)为
fY1,Y2(y1,y2)={fX1,X2[w1(y1,y2),w2(y1,y2)]0(y1,y2)∈Telsewhere
Y1的边缘pdffY1(y1)可以通过在y2上积分联合pdffY1,Y2(y1,y2)得到,下面给出一些例子。
例3:假设(X1,X2)有联合pdf
fX1,X2(x1,x2)={100<x1<1,0<x2<1elsewhere
那么(X1,X2)的支撑是集合S={(x1,x2):0<x1<1,0<x2<1},如图2所示。
假设Y1=X1+X2,Y2=X1−X2,变换为
y1=u1(x1,x2)=x1+x2y2=u2(x1,x2)=x1−x2
这个变换是一对一的,我们首先确定y1y2平面中的集合T,也就是该变换下S的映射,那么
x1=w1(y1,y2)=12(y1+y2)x2=w2(y1,y2)=12(y1−y2)
为了确定S在y1y2平面上对应的T,注意S的边界被变换成如下T的边界:
x1=0 into 0=12(y1+y2),x1=1 into 1=12(y1+y2),x2=0 into 0=12(y1−y2),x2=1 into 1=12(y1−y2).
图2
因此T如图3所示,接下来雅克比为
J=∣∣∣∣∣∣∂x1∂y1∂x2∂y1∂x1∂y2∂x2∂y2∣∣∣∣∣∣=∣∣∣∣∣121212−12∣∣∣∣∣=−12
虽然建议变换S的边界,但是许多人直接使用不等式
0<x1<1,0<x2<1
那么四个不等式变成
0<12(y1+y2)<1,0<12(y1−y2)<1
很容易看出这些等价于
−y1<y2, y2<2−y1, y2<y1, y1−2<y2
他们定义了集合T。
图3
因此(Y1,Y2)的联合pdf为
fY1,Y2(y1,y2)={fX1,X2[12(y1+y2),12(y1−y2)]|J|=120(y1,y2)∈Telsewhere
Y1的边缘pdf为
fY1(y1)=∫∞−∞fY1,Y2(y1,y2)dy2
如果参考图3,可以看出
fY1(y1)=⎧⎩⎨⎪⎪⎪⎪∫y1−y112dy2=y1∫2−y1y1−212dy2=2−y100<y1≤11<y1<2elsewhere
同样的,我们可以得出fY2(y2)的边缘pdf为
fY2(y2)=⎧⎩⎨⎪⎪⎪⎪∫y2+2−y212dy1=y2+1∫2−y2y212dy1=1−y20−1<y2≤00<y2<1elsewhere
例4:令Y−1=12(X1−X2),其中X1,X2有联合pdf,
fX1,X2(x1,x2)={14exp(−x1+x22)00<x1<∞,0<x2<∞elsewhere
令Y2=X2使得y1=12(x1−x2),y2=x2或者等价的x1=2y1+y2,x2=y2定义了从S={(x1,x2):0<x1<∞,0<x2<∞} 到T={(y1,y2):−2y1<y2,0<y2,−∞<y1<∞} 的一对一变换,该变换的雅克比为
J=∣∣∣2011∣∣∣=2
因此Y1,Y2的联合pdf为
fY1,Y2(y1,y2)={|2|4e−y1−y20(y1,y2)∈Telsewhere
因此Y1的pdf为
fY1(y1)={∫∞−2y112e−y1−y2dy2=12ey1∫∞012e−y1−y2dy2=12e−y1−∞<y1<00≤y1<∞
或者
fY1(y1)=12e−|y1|,−∞<y1<∞
这个pdf称为双指数或拉普拉斯pdf。
例5:X1,X2有联合pdf
fX1,X2(x1,x2)={10x1x2200<x1<x2<1elsewhere
假设Y1=X1/X2,Y2=X2,那么逆变换是x1=y1y2,x2=y2,其雅克比为
J=∣∣∣y20y11∣∣∣=y2
定义在(X1,X2)支撑S上的不等式变为
0<y1y2,y1y2<y2,y2<1
这些不等式等价于定义在(Y1,Y2)支撑集T上的
0<y1<1,0<y2<1
因此(Y1,Y2)的联合pdf为
fY1,Y2(y1,y2)=10y1y2y22|y2|=10y1y42,(y1,y2)∈T
边缘pdf为:
fy1(y1)=∫1010y1y42dy2=2y1, 0<y1<1
其余地方为零,
fy2(y2)=∫1010y1y42dy1=5y42, 0<y2<1
其余地方为零。
除了用变量变换与cdf来求随机变量函数的分布外,还有一种方法叫矩生成函数,特别适合随机变量的线性函数。前篇文章讲过,如果Y=g(X1,X2),那么如果E(Y)存在的话,对于连续情况它等于
E(Y)=∫∞−∞∫∞−∞g(x1,x2)fX1,X2(x1,x2)dx1dx2
离散情况只需将积分符号替换成求和即可。当然函数g(X1,X2)可以是exp{tu(X1,X2)},这样的话我们就找出了函数Z=u(X1,X2)的mgf,如果我们将这个mgf看成某个分布,那么Z就满足此分布。接下来给出俩个例子说明这个方法。
例6:X1,X2的联合pmf为
pX1,X2(x1,x2)={μx11μx22e−μ1e−μ2x1!x2!0x1=0,1,2,3,…,x2=0,1,2,3,…elsewhere
其中μ1,μ2是固定的正实数,令Y=X1+X2,考虑
E(etY)=∑x1=0∞∑x2=0∞et(x1+x2)pX1,X2(x1,x2)=∑x1=0∞etx1μx11e−μ1x1!∑x2=0∞etx2μx22e−μ2x2!=⎡⎣e−μ1∑x1=0∞(etμ1)x1x1!⎤⎦⎡⎣e−μ2∑x2=0∞(etμ2)x2x2!⎤⎦=[eμ1(et−1)][eμ2(et−1)]=e(μ1+μ2)(et−1)
注意倒数第二行中括号中的分别是X1,X2的mgf,因此Y 的mgf与X1的是相同的,除了μ1用μ1+μ2代替外。故根据mgf的唯一性,Y的pmf一定是
pY(y)=e−(μ1+μ2)(μ1+μ2)yy!, y=0,1,2,…
例7:X1,X2的联合pdf为
fX1,X2(x1,x2)={14exp(−x1+x22)00<x1<∞,0<x2<∞elsewhere
所以Y=(1/2)(X1−X2)的mgf为
E(etY)=∫∞0∫∞0et(x1−x2)/214e−(x1+x2)/2dx1dx2=[∫∞012e−x1(1−t)/2dx1][∫∞012e−x2(1+t)/2dx2]=[11−t][11+t]=11−t2
假设1−t>0,1+t>0;即−1<t<1,然而双指数分布的mgf为
∫∞−∞etxe−|x|2dx=∫0−∞e(1+t)x2dx+∫∞0e(t−1)x2dx=12(1+t)+12(1−t)=11−t2
假设−1<t<1,因此根据mgf的唯一性,Y满足双指数分布。