漫步数理统计十六——变换

本文探讨了随机变量变换的方法,包括离散与连续情况下的变换公式,并通过具体例子展示了如何求解变换后的随机变量分布。
部署运行你感兴趣的模型镜像

(X1,X2)是随机向量,假设我们知道(X1,X2)的联合分布而我们想求(X1,X2)变换的分布,假设为Y=g(X1,X2),我们通过得到Y的cdf即可去除。还有种方式是使用变换,考虑前面讲过的变换理论,本篇文章将其扩展到随机向量。最好的方式是分开讨论离散与连续的情况,我们首先讨论离散情况。

pX1,X2(x1,x2)是两个离散随机变量X1,X2的联合pmf,pX1,X2>0的点集为S,即S(X1,X2)的支撑。令y=u1(x1,x2),y2=u2(x1,x2)表示ST的一对一变换,两个新随机变量Y1=u1(X1X2),Y2=u2(X1,X2)

pY1,Y2(y1,y2)={pX1,X2[w1(y1,y2),w2(y1,y2)]0(y1,y2)Telsewhere

其中x1=w1(y1,y2),x2=w2(y1,y2)y1=u1(x1,x2),y2=u2(x1,x2)的单值逆,根据pY1,Y2(y1,y2)的联合pmf,我们通过对y2求和得到Y1的边缘pmf 或者对y1求和得到Y2的边缘pmf。

在变换变换方法中,需要强调的是我们需要两个新变量代替两个旧变量,下面给出实例。

1X1,X2的联合pmf为

pX1,X2(x1,x2)=μx11μx22eμ1eμ2x1!x2!,x1=0,1,2,3,,x2=0,1,2,3,

其他地方为零,其中μ1,μ2是确定的正实数,因此空间S是点(x1,x2)的集合,其中x1,x2均是非负实数,我们希望求出y1=X1+X2的pmf。如果我们使用变量代换,那么我们需要定义第二个随机变量Y2,因为我们对Y2不感兴趣,所以我们选择一种简单的一对一变换,例如取Y2=X2,那么y1=x1+x2y2=x2表示将空间S映射到

T={y1,y2:y2=0,1,,y1 y1=0,1,2,}

的一对一变换。注意,如果(y1,y2)T,那么0y2y1,逆函数为x1=y1y2,x2=y2,所以Y1,Y2的联合pmf为

pY1,Y2(y1,y2)=μy1y21μy22eμ1μ2(y1y2)!y2!,(y1,y2)T

其他地方为零。因此Y1的边缘pmf为

pY1(y1)=y2=0y1pY1,Y2(y1,y2)=eμ1μ2y1!y2=0y1y1!(y1y2)!y2!μy1y21μy22=(μ1+μ2)y1eμ1μ2y1!,y=0,1,2,

其他地方为零。

对于连续情况,我们从实例开始讲解,

2考虑从单位正方形S={(x,y):0<x<1,0<y<1}中随机选择点(X,Y),假设我们感兴趣的既不在X中也不是Y中,而是在Z=X+Y中,因为是随机的,所以在单位正方形上的概率分布可以看成是均匀的,那么X,Y的pdf可以写成

fX,Y(x,y)={100<x<1,0<y<1elsewhere

它描述了概率模型。接下里Z的cdf表示成FZ=P(X+Yz),那么

FZ(z)=0z)zx0dydx=z2211z11zxdydx=1(2z)221z<00z<11z<22z

因为对于所有的zFZ存在,所以Z的pmf可以写成

fZ(z)=z2z00<z<11z<2elsewhere

现在我们讨论连续情况的一般变换方法,(X1,X2)有联合连续分布,其pdf为fX1,X2(x1,x2),支撑集为S。假设随机变量Y1,Y2Y1=u1(X1,X2),Y2=u2(X1,X2),其中函数y1=u1(x1,x2),y2=u2(x1,x2)定义了从集合ST上的一对一变换,其中T(Y1,Y2)的支撑。如果我们用y1,y2 来表示x1,x2,那么我们可以写成x1=w1(y1,y2),x2=w2(y1,y2),行列式

J=x1y1x2y1x1y2x2y2

称为变换的雅克比,用符号J表示,假设这些一阶偏导是连续的并且雅克比J 不等于T中的零。

利用分析中的定理,我们能找出(Y1,Y2)的联合pdf,令AS 的子集,B表示一对一变换A的映射(如图1)


这里写图片描述
图1

因为变换是一对一的,所以事件{(X1,X2)A},{(Y1,Y2)B}是等价的,故

P[(Y1,Y2)B]=P[(X1,X2)A]=AfX1,X2(x1,x2)dx1dx2

我们想用y1=u1(x1,x2),y2=u2(x1,x2)或者x1=w1(y1,y2),x2=w2(y1,y2)替换积分变量,那么根据分析中的知识可得

A=fX1,X2(x1,x2)dx1dx2=BfX1,X2[w1(y1,y2),w2(y1,y2)]|J|dy1dy2

因此,对于T中的每个集合B

P[(Y1,Y2)B]=BfX1,X2[w1(y1,y2),w2(y1,y2)]|J|dy1dy2

这表明Y1,Y2的联合pdffY1,Y2(y1,y2)

fY1,Y2(y1,y2)={fX1,X2[w1(y1,y2),w2(y1,y2)]0(y1,y2)Telsewhere

Y1的边缘pdffY1(y1)可以通过在y2上积分联合pdffY1,Y2(y1,y2)得到,下面给出一些例子。

3假设(X1,X2)有联合pdf

fX1,X2(x1,x2)={100<x1<1,0<x2<1elsewhere

那么(X1,X2)的支撑是集合S={(x1,x2):0<x1<1,0<x2<1},如图2所示。

假设Y1=X1+X2,Y2=X1X2,变换为

y1=u1(x1,x2)=x1+x2y2=u2(x1,x2)=x1x2

这个变换是一对一的,我们首先确定y1y2平面中的集合T,也就是该变换下S的映射,那么

x1=w1(y1,y2)=12(y1+y2)x2=w2(y1,y2)=12(y1y2)

为了确定Sy1y2平面上对应的T,注意S的边界被变换成如下T的边界:

x1=0 into 0=12(y1+y2),x1=1 into 1=12(y1+y2),x2=0 into 0=12(y1y2),x2=1 into 1=12(y1y2).


这里写图片描述
图2

因此T如图3所示,接下来雅克比为

J=x1y1x2y1x1y2x2y2=12121212=12

虽然建议变换S的边界,但是许多人直接使用不等式

0<x1<1,0<x2<1

那么四个不等式变成

0<12(y1+y2)<1,0<12(y1y2)<1

很容易看出这些等价于

y1<y2, y2<2y1, y2<y1, y12<y2

他们定义了集合T


这里写图片描述
图3

因此(Y1,Y2)的联合pdf为

fY1,Y2(y1,y2)={fX1,X2[12(y1+y2),12(y1y2)]|J|=120(y1,y2)Telsewhere

Y1的边缘pdf为

fY1(y1)=fY1,Y2(y1,y2)dy2

如果参考图3,可以看出

fY1(y1)=y1y112dy2=y12y1y1212dy2=2y100<y111<y1<2elsewhere

同样的,我们可以得出fY2(y2)的边缘pdf为

fY2(y2)=y2+2y212dy1=y2+12y2y212dy1=1y201<y200<y2<1elsewhere

4Y1=12(X1X2),其中X1,X2有联合pdf,

fX1,X2(x1,x2)={14exp(x1+x22)00<x1<,0<x2<elsewhere

Y2=X2使得y1=12(x1x2),y2=x2或者等价的x1=2y1+y2,x2=y2定义了从S={(x1,x2):0<x1<,0<x2<}T={(y1,y2):2y1<y2,0<y2,<y1<} 的一对一变换,该变换的雅克比为

J=2011=2

因此Y1,Y2的联合pdf为

fY1,Y2(y1,y2)={|2|4ey1y20(y1,y2)Telsewhere

因此Y1的pdf为

fY1(y1)={2y112ey1y2dy2=12ey1012ey1y2dy2=12ey1<y1<00y1<

或者

fY1(y1)=12e|y1|,<y1<

这个pdf称为双指数或拉普拉斯pdf。

5X1,X2有联合pdf

fX1,X2(x1,x2)={10x1x2200<x1<x2<1elsewhere

假设Y1=X1/X2,Y2=X2,那么逆变换是x1=y1y2,x2=y2,其雅克比为

J=y20y11=y2

定义在(X1,X2)支撑S上的不等式变为

0<y1y2,y1y2<y2,y2<1

这些不等式等价于定义在(Y1,Y2)支撑集T上的

0<y1<1,0<y2<1

因此(Y1,Y2)的联合pdf为

fY1,Y2(y1,y2)=10y1y2y22|y2|=10y1y42,(y1,y2)T

边缘pdf为:

fy1(y1)=1010y1y42dy2=2y1, 0<y1<1

其余地方为零,

fy2(y2)=1010y1y42dy1=5y42, 0<y2<1

其余地方为零。

除了用变量变换与cdf来求随机变量函数的分布外,还有一种方法叫矩生成函数,特别适合随机变量的线性函数。前篇文章讲过,如果Y=g(X1,X2),那么如果E(Y)存在的话,对于连续情况它等于

E(Y)=g(x1,x2)fX1,X2(x1,x2)dx1dx2

离散情况只需将积分符号替换成求和即可。当然函数g(X1,X2)可以是exp{tu(X1,X2)},这样的话我们就找出了函数Z=u(X1,X2)的mgf,如果我们将这个mgf看成某个分布,那么Z就满足此分布。接下来给出俩个例子说明这个方法。

6X1,X2的联合pmf为

pX1,X2(x1,x2)={μx11μx22eμ1eμ2x1!x2!0x1=0,1,2,3,,x2=0,1,2,3,elsewhere

其中μ1,μ2是固定的正实数,令Y=X1+X2,考虑

E(etY)=x1=0x2=0et(x1+x2)pX1,X2(x1,x2)=x1=0etx1μx11eμ1x1!x2=0etx2μx22eμ2x2!=eμ1x1=0(etμ1)x1x1!eμ2x2=0(etμ2)x2x2!=[eμ1(et1)][eμ2(et1)]=e(μ1+μ2)(et1)

注意倒数第二行中括号中的分别是X1,X2的mgf,因此Y 的mgf与X1的是相同的,除了μ1μ1+μ2代替外。故根据mgf的唯一性,Y的pmf一定是

pY(y)=e(μ1+μ2)(μ1+μ2)yy!, y=0,1,2,

7X1,X2的联合pdf为

fX1,X2(x1,x2)={14exp(x1+x22)00<x1<,0<x2<elsewhere

所以Y=(1/2)(X1X2)的mgf为

E(etY)=00et(x1x2)/214e(x1+x2)/2dx1dx2=[012ex1(1t)/2dx1][012ex2(1+t)/2dx2]=[11t][11+t]=11t2

假设1t>0,1+t>0;即1<t<1,然而双指数分布的mgf为

etxe|x|2dx=0e(1+t)x2dx+0e(t1)x2dx=12(1+t)+12(1t)=11t2

假设1<t<1,因此根据mgf的唯一性,Y满足双指数分布。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值