漫步数理统计十六——变换

(X1,X2) 是随机向量,假设我们知道 (X1,X2) 的联合分布而我们想求 (X1,X2) 变换的分布,假设为 Y=g(X1,X2) ,我们通过得到 Y 的cdf即可去除。还有种方式是使用变换,考虑前面讲过的变换理论,本篇文章将其扩展到随机向量。最好的方式是分开讨论离散与连续的情况,我们首先讨论离散情况。

pX1,X2(x1,x2)是两个离散随机变量 X1,X2 的联合pmf, pX1,X2>0 的点集为 S ,即 S (X1,X2) 的支撑。令 y=u1(x1,x2),y2=u2(x1,x2) 表示 S T 的一对一变换,两个新随机变量 Y1=u1(X1X2),Y2=u2(X1,X2)

pY1,Y2(y1,y2)={pX1,X2[w1(y1,y2),w2(y1,y2)]0(y1,y2)Telsewhere

其中 x1=w1(y1,y2),x2=w2(y1,y2) y1=u1(x1,x2),y2=u2(x1,x2) 的单值逆,根据 pY1,Y2(y1,y2) 的联合pmf,我们通过对 y2 求和得到 Y1 的边缘pmf 或者对 y1 求和得到 Y2 的边缘pmf。

在变换变换方法中,需要强调的是我们需要两个新变量代替两个旧变量,下面给出实例。

1 X1,X2 的联合pmf为

pX1,X2(x1,x2)=μx11μx22eμ1eμ2x1!x2!,x1=0,1,2,3,,x2=0,1,2,3,

其他地方为零,其中 μ1,μ2 是确定的正实数,因此空间 S 是点 (x1,x2) 的集合,其中 x1,x2 均是非负实数,我们希望求出 y1=X1+X2 的pmf。如果我们使用变量代换,那么我们需要定义第二个随机变量 Y2 ,因为我们对 Y2 不感兴趣,所以我们选择一种简单的一对一变换,例如取 Y2=X2 ,那么 y1=x1+x2y2=x2 表示将空间 S 映射到

T={y1,y2:y2=0,1,,y1 y1=0,1,2,}

的一对一变换。注意,如果 (y1,y2)T ,那么 0y2y1 ,逆函数为 x1=y1y2,x2=y2 ,所以 Y1,Y2 的联合pmf为

pY1,Y2(y1,y2)=μy1y21μy22eμ1μ2(y1y2)!y2!,(y1,y2)T

其他地方为零。因此 Y1 的边缘pmf为

pY1(y1)=y2=0y1pY1,Y2(y1,y2)=eμ1μ2y1!y2=0y1y1!(y1y2)!y2!μy1y21μy22=(μ1+μ2)y1eμ1μ2y1!,y=0,1,2,

其他地方为零。

对于连续情况,我们从实例开始讲解,

2 考虑从单位正方形 S={(x,y):0<x<1,0<y<1} 中随机选择点 (X,Y) ,假设我们感兴趣的既不在 X 中也不是Y中,而是在 Z=X+Y 中,因为是随机的,所以在单位正方形上的概率分布可以看成是均匀的,那么 X,Y 的pdf可以写成

fX,Y(x,y)={100<x<1,0<y<1elsewhere

它描述了概率模型。接下里 Z 的cdf表示成FZ=P(X+Yz),那么

FZ(z)=0z)zx0dydx=z2211z11zxdydx=1(2z)221z<00z<11z<22z

因为对于所有的 z FZ存在,所以 Z 的pmf可以写成

fZ(z)=z2z00<z<11z<2elsewhere

现在我们讨论连续情况的一般变换方法, (X1,X2) 有联合连续分布,其pdf为 fX1,X2(x1,x2) ,支撑集为 S 。假设随机变量 Y1,Y2 Y1=u1(X1,X2),Y2=u2(X1,X2) ,其中函数 y1=u1(x1,x2),y2=u2(x1,x2) 定义了从集合 S T 上的一对一变换,其中 T (Y1,Y2) 的支撑。如果我们用 y1,y2 来表示 x1,x2 ,那么我们可以写成 x1=w1(y1,y2),x2=w2(y1,y2) ,行列式

J=x1y1x2y1x1y2x2y2

称为变换的雅克比,用符号 J 表示,假设这些一阶偏导是连续的并且雅克比J 不等于 T 中的零。

利用分析中的定理,我们能找出 (Y1,Y2) 的联合pdf,令 A S 的子集, B 表示一对一变换A的映射(如图1)


这里写图片描述
图1

因为变换是一对一的,所以事件 {(X1,X2)A},{(Y1,Y2)B} 是等价的,故

P[(Y1,Y2)B]=P[(X1,X2)A]=AfX1,X2(x1,x2)dx1dx2

我们想用 y1=u1(x1,x2),y2=u2(x1,x2) 或者 x1=w1(y1,y2),x2=w2(y1,y2) 替换积分变量,那么根据分析中的知识可得

A=fX1,X2(x1,x2)dx1dx2=BfX1,X2[w1(y1,y2),w2(y1,y2)]|J|dy1dy2

因此,对于 T 中的每个集合 B

P[(Y1,Y2)B]=BfX1,X2[w1(y1,y2),w2(y1,y2)]|J|dy1dy2

这表明 Y1,Y2 的联合pdf fY1,Y2(y1,y2)

fY1,Y2(y1,y2)={fX1,X2[w1(y1,y2),w2(y1,y2)]0(y1,y2)Telsewhere

Y1 的边缘pdf fY1(y1) 可以通过在 y2 上积分联合pdf fY1,Y2(y1,y2) 得到,下面给出一些例子。

3 假设 (X1,X2) 有联合pdf

fX1,X2(x1,x2)={100<x1<1,0<x2<1elsewhere

那么 (X1,X2) 的支撑是集合 S={(x1,x2):0<x1<1,0<x2<1} ,如图2所示。

假设 Y1=X1+X2,Y2=X1X2 ,变换为

y1=u1(x1,x2)=x1+x2y2=u2(x1,x2)=x1x2

这个变换是一对一的,我们首先确定 y1y2 平面中的集合 T ,也就是该变换下 S 的映射,那么

x1=w1(y1,y2)=12(y1+y2)x2=w2(y1,y2)=12(y1y2)

为了确定 S y1y2 平面上对应的 T ,注意 S 的边界被变换成如下 T 的边界:

x1=0 into 0=12(y1+y2),x1=1 into 1=12(y1+y2),x2=0 into 0=12(y1y2),x2=1 into 1=12(y1y2).


这里写图片描述
图2

因此 T 如图3所示,接下来雅克比为

J=x1y1x2y1x1y2x2y2=12121212=12

虽然建议变换 S 的边界,但是许多人直接使用不等式

0<x1<1,0<x2<1

那么四个不等式变成

0<12(y1+y2)<1,0<12(y1y2)<1

很容易看出这些等价于

y1<y2, y2<2y1, y2<y1, y12<y2

他们定义了集合 T


这里写图片描述
图3

因此 (Y1,Y2) 的联合pdf为

fY1,Y2(y1,y2)={fX1,X2[12(y1+y2),12(y1y2)]|J|=120(y1,y2)Telsewhere

Y1 的边缘pdf为

fY1(y1)=fY1,Y2(y1,y2)dy2

如果参考图3,可以看出

fY1(y1)=y1y112dy2=y12y1y1212dy2=2y100<y111<y1<2elsewhere

同样的,我们可以得出 fY2(y2) 的边缘pdf为

fY2(y2)=y2+2y212dy1=y2+12y2y212dy1=1y201<y200<y2<1elsewhere

4 Y1=12(X1X2) ,其中 X1,X2 有联合pdf,

fX1,X2(x1,x2)={14exp(x1+x22)00<x1<,0<x2<elsewhere

Y2=X2 使得 y1=12(x1x2),y2=x2 或者等价的 x1=2y1+y2,x2=y2 定义了从 S={(x1,x2):0<x1<,0<x2<} T={(y1,y2):2y1<y2,0<y2,<y1<} 的一对一变换,该变换的雅克比为

J=2011=2

因此 Y1,Y2 的联合pdf为

fY1,Y2(y1,y2)={|2|4ey1y20(y1,y2)Telsewhere

因此 Y1 的pdf为

fY1(y1)={2y112ey1y2dy2=12ey1012ey1y2dy2=12ey1<y1<00y1<

或者

fY1(y1)=12e|y1|,<y1<

这个pdf称为双指数或拉普拉斯pdf。

5 X1,X2 有联合pdf

fX1,X2(x1,x2)={10x1x2200<x1<x2<1elsewhere

假设 Y1=X1/X2,Y2=X2 ,那么逆变换是 x1=y1y2,x2=y2 ,其雅克比为

J=y20y11=y2

定义在 (X1,X2) 支撑 S 上的不等式变为

0<y1y2,y1y2<y2,y2<1

这些不等式等价于定义在 (Y1,Y2) 支撑集 T 上的

0<y1<1,0<y2<1

因此 (Y1,Y2) 的联合pdf为

fY1,Y2(y1,y2)=10y1y2y22|y2|=10y1y42,(y1,y2)T

边缘pdf为:

fy1(y1)=1010y1y42dy2=2y1, 0<y1<1

其余地方为零,

fy2(y2)=1010y1y42dy1=5y42, 0<y2<1

其余地方为零。

除了用变量变换与cdf来求随机变量函数的分布外,还有一种方法叫矩生成函数,特别适合随机变量的线性函数。前篇文章讲过,如果 Y=g(X1,X2) ,那么如果 E(Y) 存在的话,对于连续情况它等于

E(Y)=g(x1,x2)fX1,X2(x1,x2)dx1dx2

离散情况只需将积分符号替换成求和即可。当然函数 g(X1,X2) 可以是 exp{tu(X1,X2)} ,这样的话我们就找出了函数 Z=u(X1,X2) 的mgf,如果我们将这个mgf看成某个分布,那么 Z 就满足此分布。接下来给出俩个例子说明这个方法。

6 X1,X2 的联合pmf为

pX1,X2(x1,x2)={μx11μx22eμ1eμ2x1!x2!0x1=0,1,2,3,,x2=0,1,2,3,elsewhere

其中 μ1,μ2 是固定的正实数,令 Y=X1+X2 ,考虑

E(etY)=x1=0x2=0et(x1+x2)pX1,X2(x1,x2)=x1=0etx1μx11eμ1x1!x2=0etx2μx22eμ2x2!=eμ1x1=0(etμ1)x1x1!eμ2x2=0(etμ2)x2x2!=[eμ1(et1)][eμ2(et1)]=e(μ1+μ2)(et1)

注意倒数第二行中括号中的分别是 X1,X2 的mgf,因此 Y 的mgf与X1的是相同的,除了 μ1 μ1+μ2 代替外。故根据mgf的唯一性, Y 的pmf一定是

pY(y)=e(μ1+μ2)(μ1+μ2)yy!, y=0,1,2,

7 X1,X2 的联合pdf为

fX1,X2(x1,x2)={14exp(x1+x22)00<x1<,0<x2<elsewhere

所以 Y=(1/2)(X1X2) 的mgf为

E(etY)=00et(x1x2)/214e(x1+x2)/2dx1dx2=[012ex1(1t)/2dx1][012ex2(1+t)/2dx2]=[11t][11+t]=11t2

假设 1t>0,1+t>0 ;即 1<t<1 ,然而双指数分布的mgf为

etxe|x|2dx=0e(1+t)x2dx+0e(t1)x2dx=12(1+t)+12(1t)=11t2

假设 1<t<1 ,因此根据mgf的唯一性, Y <script type="math/tex" id="MathJax-Element-13319">Y</script>满足双指数分布。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值