Github开源AI LLM大语言模型WebUI框架推荐

大型语言模型(LLM)已经成为了一股不可忽视的力量。从对话系统到文本生成,LLM 的应用场景日益广泛。而为了更好地利用这些强大的工具,开发者们需要一个易于使用的界面来与这些模型进行交互。今天,我们就为大家带来了几个热门且最新的 GitHub 开源 LLM 大语言模型WebUI框架项目推荐。这些项目不仅能够帮助你快速构建自己的应用,还能让你体验到最前沿的技术成果。

项目名称

Star 数

项目地址

Open WebUI

49.6k

https://github.com/open-webui/open-webui

Dify

53.6k

https://github.com/langgenius/dify

Chatbox

23.4k

https://github.com/Bin-Huang/Chatbox

Chatbot UI

28.9k

https://github.com/mckaywrigley/chatbot-ui

LobeChat

46.8k

https://github.com/lobehub/lobe-chat

Streamlit

36k

https://github.com/streamlit/streamlit

Anything LLM

28k

https://github.com/Mintplex-Labs/anything-llm

Text Generation WebUI

40.9k

https://github.com/oobabooga/text-generation-webui

LangFlow

36.9k

https://github.com/logspace-ai/langflow

Chat UI

7.7k

https://github.com/huggingface/chat-ui

FastGPT

18.7k

https://github.com/labring/FastGPT

ChatWeb

31.6k

https://github.com/Chanzhaoyu/chatgpt-web

Open WebUI

项目名称

Open WebUI

Star 数

49.6k

项目地址

https://github.com/open-webui/open-webui

Open WebUI 是一款用户友好且功能丰富的自托管 Web 界面,支持多种 LLM 运行器,包括 Ollama 及与 OpenAI 兼容的 API。这款工具因其简易的安装过程和支持多样的对话方式而受到了社区的喜爱。通过 Docker 或 Kubernetes 可以无缝部署,同时它还允许开发者自定义 OpenAI API URL,满足了不同应用场景下的需求。对于想要快速搭建 AI 项目的团队来说,Open WebUI无疑是一个极佳的选择。

Dify

项目名称

Dify

Star 数

53.6k

项目地址

https://github.com/dify-ai/dify

Dify 是一个专注于创建可持续运营的原生 AI 应用的平台。它提供了可视化的编排环境,使得即使是非技术人员也能轻松上手。此外,Dify还可以作为后端即服务(Backend as a Service, BaaS)提供 API 接口,帮助企业快速集成 AI 能力。凭借其简洁直观的设计理念,Dify成为了许多初创企业和个人开发者的首选方案之一。

Chatbox

项目名称

Chatbox

Star 数

23.4k

项目地址

https://github.com/Bin-Huang/Chatbox

Chatbox是一款专为与多种人工智能语言模型(如ChatGPT、Claude、Google Gemini等)进行交互而设计。它支持Windows、Mac和Linux操作系统,提供了简便的安装包,无需复杂的设置即可快速上手。在这款应用中,用户的数据保留在本地,确保隐私不被侵犯。Chatbox提供了丰富的功能,如支持多种AI模型的无缝集成、使用DALL-E 3进行图像生成、强化的提示功能以获取更优质的响应、以及支持Markdown和LaTeX格式的消息生成。该应用还具有键盘快捷键、消息库和团队协作功能,极大地提升用户的工作效率。此外,Chatbox支持多种语言,旨在为全球用户提供便利和高效的AI助手体验。

Chatbot UI

项目名称

Chatbot UI

Star 数

28.9k

项目地址

https://github.com/mckaywrigley/chatbot-ui

Chatbot UI 是一个开源的 AI 聊天应用程序,旨在为所有人提供便捷的聊天机器人接口。用户可以通过简单的本地部署或使用官方托管版本,轻松实现与 AI 聊天机器人的互动。该项目使用现代技术栈,如 TypeScript 和 Supabase,为数据存储和用户体验提供安全、可靠的支持。新版 Chatbot UI 2.0 进行了多项功能增强,例如简化的部署流程和更好的移动设备兼容性,旨在提升用户的整体体验。通过 GitHub,开发者可以参与贡献或讨论该项目的未来发展。

LobeChat

项目名称

LobeChat

Star 数

46.8k

项目地址

https://github.com/lobehub/lobe-chat

Lobe Chat 是一个开源的现代 AI 聊天框架,旨在提供灵活且可扩展的对话界面。该平台支持多种 AI 模型提供商(如 OpenAI、Claude 3、Gemini 等),以及知识库功能(包括文件上传和知识管理),使用户能够在对话中高效管理和搜索信息。Lobe Chat 也具备多模态能力,支持视觉识别、文字转语音(TTS)和插件扩展,用户可利用简单的点击即可免费部署私人聊天应用。此外,它具有友好的用户界面和自定义主题,适应不同设备和使用场景,适合个人用户和开发者。

Streamlit

项目名称

Streamlit

Star 数

36k

项目地址

https://github.com/streamlit/streamlit

Streamlit是一个非常受欢迎的开源框架,它让数据应用的创建变得极为简单。通过复制粘贴Python代码,用户可以快速构建出数据驱动的Web应用,尤其对机器学习和大语言模型的展示非常有效。Streamlit支持多种数据可视化库,并且可以直接集成模型推理,用户界面友好,容易上手。如果你是开发者且需要快速展示算法结果,Streamlit无疑是一个很好的选择。


Anything LLM

特性

说明

开发语言

React + Node.js

特色功能

AI Agent支持、多模态、文档管理

部署方式

Docker、桌面客户端

支持模型

主流闭源及开源LLM、向量数据库

Anything LLM是一个全栈应用程序,让用户可以轻松地将任何文档、资源转化为LLM可用的上下文进行智能对话。它的特色在于支持自定义AI Agent、多模态能力,以及简洁的拖拽式文档管理界面。项目提供了完整的开发者API,方便进行二次开发。在向量数据库方面支持LanceDB、Pinecone等主流选择,使用起来非常灵活。对于需要构建知识库问答系统的场景,它是一个非常好的选择。

Text Generation WebUI

特性

说明

开发语言

Python + Gradio

特色功能

模型训练、多轮对话、参数调优

部署方式

Python环境直接运行

支持模型

本地开源模型、Hugging Face模型

Text Generation WebUI是一个基于Gradio构建的强大WebUI工具,专注于文本生成场景。它支持多种本地部署的开源模型,并提供了丰富的模型训练和参数调优功能。界面设计简洁直观,适合希望对模型进行深度定制的用户。它的一大特色是支持模型量化和优化,能让消费级显卡也能运行较大的语言模型。对于研究人员和开发者来说,这是一个非常实用的工具。

LangFlow

特性

说明

开发语言

Python + React

特色功能

可视化流程编排、组件复用

部署方式

Docker、Python包

支持模型

兼容LangChain的模型

LangFlow是一个低代码平台,让用户可以通过拖拽方式可视化地构建AI应用流程。它与LangChain深度集成,能够轻松编排各类语言模型、向量存储、工具等组件。界面优雅直观,支持组件的导入导出和复用。对于想要快速搭建复杂AI应用流程又不想写大量代码的用户来说,这是一个理想的选择。

Chat UI

特性

说明

开发语言

React + TypeScript

特色功能

多模型对话、参数配置、界面定制

部署方式

Docker、Node.js

支持模型

Hugging Face模型、自定义模型

Chat UI是Hugging Face官方开源的对话界面框架,具有简洁优雅的设计风格。它支持同时与多个模型对话,并提供丰富的参数配置选项。界面完全支持定制,可以根据需要调整样式和功能。特别适合想要快速搭建模型演示界面的场景。项目持续活跃更新,是一个值得关注的选择。

FastGPT

特性

说明

开发语言

Next.js + TypeScript

特色功能

知识库管理、对话历史、API集成

部署方式

Docker、云服务

支持模型

OpenAI、Azure、自定义模型

FastGPT是一个开箱即用的智能对话系统,专注于知识库问答场景。它提供了完善的知识库管理功能,支持文档导入、检索增强等特性。界面设计现代简约,使用体验流畅。特别适合企业快速构建智能客服、知识问答等应用。项目有完善的中文文档支持,对中文用户非常友好。

ChatWeb

特性

说明

开发语言

Vue3 + NestJS

特色功能

多用户管理、权限控制、部署简单

部署方式

Docker一键部署

支持模型

OpenAI API及兼容接口

ChatWeb是一个轻量级的WebUI框架,采用Vue3开发,具有清新简约的界面风格。它的特色是部署非常简单,通过Docker可以一键完成。支持多用户管理和权限控制,适合团队协作场景。虽然功能相对基础,但胜在稳定可靠,是一个不错的入门选择。以上就是8个值得推荐的开源LLM WebUI框架。每个项目都有其独特的优势和适用场景,建议大家根据实际需求选择合适的方案。随着大语言模型技术的发展,相信会有更多优秀的开源项目涌现,为AI应用开发提供更好的支持。

<think>好的,用户现在问的是有没有大模型聊天界面的UI开源项目推荐。之前他们询问过如何本地部署DeepSeek,所以可能他们在尝试搭建自己的聊天应用,现在需要前端界面。 首先,我需要回忆一下常见的开源聊天UI项目。比如Gradio和Streamlit,这两个是Python库,适合快速搭建界面,特别是Gradio,Hugging Face的模型演示常用,用户可能已经接触过。然后是更专业的项目,比如Chatbot UI,这是一个仿ChatGPT的界面,支持多个模型,可能用户需要更接近产品级的界面。 接下来要考虑用户的需求。他们可能已经部署好了模型,现在需要一个前端让用户交互。可能需要支持多个模型,或者有扩展性,比如通过API调用。用户可能对界面美观和易用性有要求,比如响应式设计、Markdown支持、历史记录等。 然后需要评估每个推荐项目的优缺点。比如Gradio和Streamlit适合快速原型,但定制性可能不足。Chatbot UI和NextChat(原名ChatGPT Next)更接近真实产品,可能需要一些前端部署知识。Open WebUI如果用户使用Ollama,可能集成更方便,适合本地模型。其他如dify-ai和fastgpt可能更适合企业级,但需要看用户的具体情况。 还要注意用户的技术背景。如果他们熟悉Python,Gradio可能更容易上手。如果他们想要更复杂的功能,比如用户管理或数据存储,可能需要更全面的解决方案。另外,用户可能需要支持移动端,所以响应式设计是一个加分项。 最后,需要提醒用户根据技术栈和需求选择,比如是否需要开源协议允许商用,是否需要后端集成,或者是否需要额外的功能如知识库支持。可能用户后续会问如何集成自己的模型到这些UI中,所以可以提前考虑是否需要说明基本的API配置步骤。</think>以下是一些热门的开源大模型聊天界面UI项目推荐,适用于快速搭建类似 ChatGPT 的交互界面,支持本地或云端模型接入: --- ### **1. 轻量级工具(适合快速部署)** 1. **Gradio** - **特点**: Python库,5分钟搭建Web界面,支持Markdown、文件上传和流式输出 - **代码示例**: ```python import gradio as gr def chat(input_text): return "模型回复:" + input_text gr.ChatInterface(chat).launch() ``` - **GitHub**: https://github.com/gradio-app/gradio 2. **Streamlit Chat** - **特点**: 基于Streamlit的对话模板,适合数据科学家快速验证原型 - **GitHub模板**: https://github.com/streamlit/llm-examples --- ### **2. 高仿ChatGPT风格(推荐生产级使用)** 1. **Chatbot UI** - **特点**: 支持多模型API接入(OpenAI/Anthropic/Mistral等),支持对话历史、系统提示词 - **部署**: 支持Vercel一键部署,前端基于Next.js - **GitHub**: https://github.com/mckaywrigley/chatbot-ui 2. **NextChat (原名ChatGPT Next)** - **特点**: 支持Azure/本地模型API,提供用户管理、付费系统等扩展功能 - **Demo**: https://chat.nextweb.fun - **GitHub**: https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web --- ### **3. 自托管企业级方案** 1. **Open WebUI** - **特点**: 专为本地部署设计(如Ollama),支持模型管理、RAG知识库检索 - **亮点**: 无需代码,Docker一键启动,界面交互最接近ChatGPT - **GitHub**: https://github.com/open-webui/open-webui 2. **dify-ai** - **特点**: 支持可视化工作流编排,内置知识库和Agent功能 - **适用场景**: 企业级AI应用开发 - **GitHub**: https://github.com/langgenius/dify --- ### **4. 其他特色项目** - **fastgpt** 支持知识库问答的对话框架,适合垂直领域应用 GitHub: https://github.com/labring/FastGPT - **quivr** 主打“第二大脑”概念,支持多格式文件上传与AI分析 GitHub: https://github.com/QuivrHQ/quivr --- ### **选择建议** - **个人/小团队**: 优先选择 `Chatbot UI` 或 `NextChat`,部署简单且社区活跃 - **本地模型测试**: 使用 `Gradio` 或 `Open WebUI` 快速验证 - **企业级应用**: 考虑 `dify-ai` 或 `fastgpt` 的完整解决方案 大部分项目通过修改API配置即可接入自研模型(如将OpenAI接口替换为本地模型的兼容API),具体可参考各项目的文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QQ359677345

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值