python cv2 numpy 四(二值化图像)

本文介绍了如何使用OpenCV进行图像二值化,包括简单阈值法、自适应阈值法(如Adaptive_THRESH_MEAN_C和Adaptive_THRESH_GAUSSIAN_C)以及cv2.inRange函数的应用实例,展示了不同阈值处理方式对图像效果的影响。
摘要由CSDN通过智能技术生成

使用opencv 得到二值化图像

opencv二值化几种方法:

1,简单阈值二值化

函数原型:cv2.Threshold(src, dst, threshold, maxValue, thresholdType)

参数:

src–源数组(单通道,32位浮点中的8位)。

dst–与src大小和类型相同的目标数组。

thresh–阈值。

maxVal–用于THRESH_BINARY和THRESH_BINARY_INV阈值类型的最大值。

thresholdType–阈值类型(请参阅下面的详细信息)。

示例代码:

import cv2
import os
from matplotlib import pyplot as plt

imagePath1 = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath("."))),"20180425193352524.png")
image1 = cv2.imread(imagePath1,cv2.IMREAD_GRAYSCALE)

ret,thresh1=cv2.threshold(image1,127,255,cv2.THRESH_BINARY)
ret,thresh2=cv2.threshold(image1,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3=cv2.threshold(image1,127,255,cv2.THRESH_TRUNC)
ret,thresh4=cv2.threshold(image1,127,255,cv2.THRESH_TOZERO)
ret,thresh5=cv2.threshold(image1,127,255,cv2.THRESH_TOZERO_INV)


titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [image1, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

运行结果如下:

2,自适应阈值二值化

在前面的部分我们使用的是全局阈值,整幅图像采用同一个数作为阈值。但是这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。

函数原型:

cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst])

src–源8位单通道图像。

dst–与src大小和类型相同的目标图像。

maxValue–指定给满足条件的像素的非零值。请参阅以下详细信息。

adaptiveMethod–要使用的自适应阈值算法,Adaptive_THRESH_MEAN_C或Adaptive_THRESH_GASSIAN_C。请参阅以下详细信息。

thresholdType–阈值类型,必须为THRESH_BINARY或THRESH_BINARY_INV。

blockSize–用于计算像素阈值的像素邻域的大小:3、5、7,依此类推。

C–从平均值或加权平均值中减去的常数(见下文详细信息)。通常情况下,它是正的,但也可能是零或负的。

该函数根据以下公式将灰度图像转换为二进制图像:

其中T(x,y)是针对每个像素单独计算的阈值:

对于方法ADAPTIVE_THRESH_MEAN_C,阈值T(x,y)是(x,y)减去C的 \texttt{blockSize} \times \texttt{blockSize}邻域的平均值。

对于方法ADAPTIVE_THRESH_GUSSIAN_C,阈值T(x,y)是(x,y)减去C的\texttt{blockSize} \times \texttt{blockSize}邻域的加权和(与高斯窗口的互相关)。默认的西格玛(标准偏差)用于指定的块大小。请参阅getGaussianKernel()。

示例代码如下:

import cv2
import os
from matplotlib import pyplot as plt
imagePath1 = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath("."))),"20180425193352524.png")
image1 = cv2.imread(imagePath1,cv2.IMREAD_COLOR)

image1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)

ret,th1 = cv2.threshold(image1,127,255,cv2.THRESH_BINARY)

#11 为Block Size,2 为 C 值
th2 = cv2.adaptiveThreshold(image1,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)  #图像必须转成灰度图

th3 = cv2.adaptiveThreshold(image1,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,15,2)   #图像必须转成灰度图

titles = ["original Image","Global Thresholding(v = 127)","Adaptive Mean Thresholding","Adaptive Thresholding "]

images = [image1,th1,th2,th3]

for i in range(4):
    plt.subplot(2,2,i+1),plt.imshow(images[i],"gray")
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

结果如下:

3,使用cv2.inrange

函数原型:cv2.inRange(src, lowerb, upperb[, dst])

参数:

src–第一个源数组。

lowerb–包含下边界数组或标量。

upperb–包含上边界数组或标量。

dst–与src和CV_8U类型大小相同的目标数组。

该功能检查范围如下:

对于单通道输入阵列的每个元素:

对于两个通道阵列:

也就是说,如果src(I)在指定的1D、2D、3D、…框内,dst(I)被设置为255(all 1 -bits)。。。,否则为0。

当下限和/或上限参数是标量时,应省略上述公式中位于下限和上限b的索引(I)。

示例代码:

import cv2
import os
import numpy as np
from matplotlib import pyplot as plt
imagePath1 = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath("."))),"20180425193352524.png")
image1 = cv2.imread(imagePath1,cv2.IMREAD_COLOR)
image = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
blackLow = np.array([0 ,0 ,0] ,np.uint8)
blackUp = np.array([160 ,255 ,100] ,np.uint8)
thresh = cv2.inRange(image1 ,blackLow, blackUp)

titles = ["original Image","Thresholding"]
images = [image,thresh]
for i in range(2):
    plt.subplot(2,2,i+1),plt.imshow(images[i],"gray")
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

u无名人士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值