为什么机器学习(一)——Hessian矩阵的正定性为什么可以决定函数是否有极值
在学习机器学习的过程中,我们不可绕开的是训练模型的时候怎么找到损失函数的极值。
可能大家都曾记住过这样一个结论:若M点处函数的梯度为0,则M为驻点,那么:
(1)Hessian矩阵正定=>函数在M点有极小值
(2)Hessian矩阵负定=>函数在M点有极大值
(3)Hessian矩阵不定=>M点不是极值点
最初我看到这个结论的时候把他当公式背下来了,但是时间久了容易忘而且理解不深刻,最近试着证明理解了一下,希望大家批评指正。
1.引理:多元函数的Taylor展开
多元函数的在 x ⃗ 0 \vec x_0 x0处的Taylor展开为:
f ( x 1 , x 2 , . . . . . . , x n ) = f ( x 0 ( 1 ) , x 0 ( 2 ) , . . . . . . , x 0 ( n ) ) + ∑ i = 1 n f x 0 ( i ) ′ ( x 0 ( 1 ) , x 0 ( 2 ) , . . . . . . , x 0 ( n ) ) ( x i − x 0 ( i ) ) + 1 2 ! ∑ i , j = 0 n ( x i − x 0 ( i ) ) ( x j − x 0 ( j ) ) f x 0 ( i ) x 0 ( j ) ′ ′ ( x 0 ( 1 ) , x 0 ( 2 ) , . . . . . . , x 0 ( n ) ) + o n f(x_1,x_2,......,x_n) = f(x_{0(1)},x_{0(2)},......,x_{0(n)})+ \sum_{i=1}^{n}f'_{x_{0(i)}}(x_{0(1)},x_{0(2)},......,x_{0(n)})(x_i - x_{0(i)})\\+ \frac{1}{2!}\sum_{i,j=0}^n(x_i-x_0(i))(x_j-x_{0(j)})f''_{x_0(i)x_0(j)}(x_{0(1)},x_{0(2)},......,x_{0(n)}) + o^n f(x1,x2,......,xn)=f(x0(1),x0(2),......,x0(n))+∑i=1nfx0(i)′(x0(1),x0(2),......,x0(n))(xi−x0(i))+2!1∑i,j=0n(xi−x0(i))(xj−x0(j))fx0(i)x0(j)′′(x0(1),x0(2),......,x0(n))+on
写成矩阵形式:
f ( x ⃗ ) = f ( x ⃗ 0 ) + [ ∇ f ( x 0 ) ] T ( x ⃗ − x ⃗ 0 ) + 1 2 ! [ x ⃗ − x ⃗ 0 ] T H ( x 0 ) [ x ⃗ − x ⃗ 0 ] + o n f(\vec x) = f(\vec x_0) + [\nabla f(x_0)]^T(\vec x - \vec x_0) +\frac{1}{2!}[\vec x - \vec x_0]^TH(x_0)[\vec x - \vec x_0] + o^n f(x)=f(x0)+[∇f(x0)]T(x−x0)+2!1[x−x0]TH(x0)[x−x0]+on
其中 H H H是Hessian矩阵
2.从极值原理出发看为什么有极值
假设
x
0
x_0
x0是驻点,我们想判断这个点是否是极值点,那么要看
f
(
x
0
+
Δ
x
)
f(x_0+\Delta x)
f(x0+Δx)和
f
(
x
0
)
f(x_0)
f(x0)的关系:
由Taylor展开的矩阵形式:
f ( x ⃗ + Δ x ⃗ ) − f ( x ⃗ ) = [ ∇ f ( x 0 ) ] T ( Δ x ⃗ ) + 1 2 ! [ Δ x ⃗ ] T H ( x 0 ) [ Δ x ⃗ ] + o n (1) f(\vec x + \vec {\Delta x})-f(\vec x) = [\nabla f(x_0)]^T( \vec {\Delta x}) +\frac{1}{2!}[ \vec {\Delta x}]^TH(x_0)[ \vec {\Delta x}] + o^n \tag{1} f(x+Δx)−f(x)=[∇f(x0)]T(Δx)+2!1[Δx]TH(x0)[Δx]+on(1)
由于
x
0
x_0
x0是驻点,所以
[
∇
f
(
x
0
)
]
T
[\nabla f(x_0)]^T
[∇f(x0)]T为0,忽略
o
n
o^n
on,则(1)式的正负仅与
[
Δ
x
⃗
]
T
H
(
x
0
)
[
Δ
x
⃗
]
[ \vec {\Delta x}]^TH(x_0)[ \vec {\Delta x}]
[Δx]TH(x0)[Δx]有关,故:
(1)Hessian矩阵正定=>(1)式大于0恒成立,函数在M点有极小值
(2)Hessian矩阵负定=>(1)式小于0恒成立函数在M点有极大值
(3)Hessian矩阵不定=>(1)式正负性难料,M点不是极值点