常见分布的期望方差矩母函数

伯努利分布 Bernoulli Distribution
f ( x ∣ p ) = { p x ( 1 − p ) 1 − x x = 0 , 1 , 0 otherwise. f(x|p)=\left\{ \begin{aligned} &p^x(1-p)^{1-x}&&x=0,1,\\ &0&&\text{otherwise.} \end{aligned} \right. f(xp)={px(1p)1x0x=0,1,otherwise.

E ( X ) = p V a r ( X ) = p ( 1 − p ) ψ ( t ) = p e t + 1 − p E(X)=p\\ Var(X)=p(1-p)\\ \psi(t)=pe^t+1-p E(X)=pVar(X)=p(1p)ψ(t)=pet+1p

二项分布 Binomial Distribution
f ( x ∣ n , p ) = { ( n x ) p x ( 1 − p ) n − x x = 0 , 1 , 2 , ⋯   , n , 0 otherwise. f(x|n,p)=\left\{ \begin{aligned} &\binom{n}{x}p^x(1-p)^{n-x}&&x=0,1,2,\cdots,n,\\ &0&&\text{otherwise.} \end{aligned} \right. f(xn,p)=(xn)px(1p)nx0x=0,1,2,,n,otherwise.

E ( X ) = n p V a r ( X ) = n p ( 1 − p ) ψ ( t ) = ( p e t + 1 − p ) n E(X)=np\\ Var(X)=np(1-p)\\ \psi(t)=(pe^t+1-p)^n E(X)=npVar(X)=np(1p)ψ(t)=(pet+1p)n

泊松分布 Poisson Distribution
f ( x ∣ λ ) = { e − λ λ x x ! x = 0 , 1 , 2 , ⋯   , 0 otherwise. f(x|\lambda)=\left\{ \begin{aligned} &\frac{e^{-\lambda}\lambda^x}{x!}&&x=0,1,2,\cdots,\\ &0&&\text{otherwise.} \end{aligned} \right. f(xλ)=x!eλλx0x=0,1,2,,otherwise.

E ( X ) = λ V a r ( X ) = λ ψ ( t ) = e λ ( e t − 1 ) E(X)=\lambda\\ Var(X)=\lambda\\ \psi(t)=e^{\lambda(e^t-1)} E(X)=λVar(X)=λψ(t)=eλ(et1)

正态分布 Normal Distribution
f ( x ∣ n , p ) = 1 2 π σ exp ⁡ [ − 1 2 ( x − μ σ ) 2 ]      − ∞ < x < ∞ . f(x|n,p)=\frac{1}{\sqrt{2\pi}\sigma}\exp[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2]\ \ \ \ -\infin<x<\infin. f(xn,p)=2π σ1exp[21(σxμ)2]    <x<.

E ( X ) = μ V a r ( X ) = σ 2 ψ ( t ) = exp ⁡ ( μ t + 1 2 σ 2 t 2 ) E(X)=\mu\\ Var(X)=\sigma^2\\ \psi(t)=\exp(\mu t+\frac{1}{2}\sigma^2t^2) E(X)=μVar(X)=σ2ψ(t)=exp(μt+21σ2t2)

伽马分布 Gamma Distribution
f ( x ∣ α , β ) = { β α Γ ( α ) x α − 1 e − β x x > 0 0 otherwise. f(x|\alpha,\beta)=\left\{ \begin{aligned} &\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}&&x>0\\ &0&&\text{otherwise.} \end{aligned} \right. f(xα,β)=Γ(α)βαxα1eβx0x>0otherwise.

E ( X ) = α β V a r ( X ) = α β 2 ψ ( t ) = ( β β − t ) α      t < β E(X)=\frac{\alpha}{\beta}\\ Var(X)=\frac{\alpha}{\beta^2}\\ \psi(t)=(\frac{\beta}{\beta-t})^\alpha\ \ \ \ t<\beta E(X)=βαVar(X)=β2αψ(t)=(βtβ)α    t<β

指数分布 Exponential Distribution
f ( x ∣ β ) = { β e − β x x > 0 0 otherwise. f(x|\beta)=\left\{ \begin{aligned} &\beta e^{-\beta x}&&x>0\\ &0&&\text{otherwise.} \end{aligned} \right. f(xβ)={βeβx0x>0otherwise.

E ( X ) = 1 β V a r ( X ) = 1 β 2 ψ ( t ) = β β − t      t < β E(X)=\frac{1}{\beta}\\ Var(X)=\frac{1}{\beta^2}\\ \psi(t)=\frac{\beta}{\beta-t}\ \ \ \ t<\beta E(X)=β1Var(X)=β21ψ(t)=βtβ    t<β

贝塔分布 Beta Distribution
f ( x ∣ α , β ) = { Γ ( α ) Γ ( β ) Γ ( α + β ) x α − 1 ( 1 − x ) β − 1 0 < x < 1 0 otherwise. f(x|\alpha,\beta)=\left\{ \begin{aligned} &\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}x^{\alpha-1}(1-x)^{\beta-1}&&0<x<1\\ &0&&\text{otherwise.} \end{aligned} \right. f(xα,β)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β100<x<1otherwise.

E ( X ) = α α + β V a r ( X ) = α β ( α + β ) 2 ( α + β + 1 ) ψ ( t ) = unknown E(X)=\frac{\alpha}{\alpha+\beta}\\ Var(X)=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\\ \psi(t)=\text{unknown} E(X)=α+βαVar(X)=(α+β)2(α+β+1)αβψ(t)=unknown

卡方分布 Chi-Square Distribution
f ( x ∣ α , β ) = { 1 2 m 2 Γ ( m 2 ) x m 2 − 1 e − x 2 x > 0 0 otherwise. f(x|\alpha,\beta)=\left\{ \begin{aligned} &\frac{1}{2^{\frac{m}{2}}\Gamma(\frac{m}{2})}x^{\frac{m}{2}-1}e^{-\frac{x}{2}}&&x>0\\ &0&&\text{otherwise.} \end{aligned} \right. f(xα,β)=22mΓ(2m)1x2m1e2x0x>0otherwise.

E ( X ) = m V a r ( X ) = 2 m ψ ( t ) = ( 1 1 − 2 t ) m 2      t < 1 2 E(X)=m\\ Var(X)=2m\\ \psi(t)=(\frac{1}{1-2t})^\frac{m}{2}\ \ \ \ t<\frac{1}{2} E(X)=mVar(X)=2mψ(t)=(12t1)2m    t<21

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
逆高斯分布是一种连续概率分布,也被称为高斯逆变换或者高斯反函数。它的概率密度函数可以表示为: f(x) = (1/√(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) 其中,μ是均值,σ^2是方差。 逆高斯分布母函数推导如下: 首先,我们定义逆高斯分布母函数为M(t),即: M(t) = E[e^(tx)] 其中,E[ ]表示期望运算。 我们可以将逆高斯分布的概率密度函数代入到母函数中,得到: M(t) = ∫[(-∞)到(+∞)] e^(tx) * f(x) dx 将概率密度函数代入后,可以得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] e^(tx) * exp(-(x-μ)^2 / (2σ^2)) dx 接下来,我们对上式进行化简。 首先,我们可以将指数项e^(tx)和e^(-(x-μ)^2 / (2σ^2))合并,并利用指数函数的性质进行变换,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-(x-μ)^2 / (2σ^2) + tx) dx 接下来,我们将指数项进行展开,并利用高斯函数的性质进行变换,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-(x^2 - 2μx + μ^2 - 2σ^2tx + t^2σ^2x^2) / (2σ^2)) dx 继续化简,可以得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-((1 - t^2σ^2)x^2 - 2(μ + σ^2t)x + μ^2) / (2σ^2)) dx 接下来,我们可以将指数项中的二次项和一次项进行配方,得到: M(t) = (1/√(2πσ^2)) * ∫[(-∞)到(+∞)] exp(-((x - (μ + σ^2t)/(1 - t^2σ^2))^2 - ((μ + σ^2t)/(1 - t^2σ^2))^2 + μ^2) / (2σ^2)) dx 继续化简,可以得到: M(t) = (1/√(2πσ^2)) * exp(((μ + σ^2t)/(1 - (μ + σ^2t)/(1 - t^2σ^2))^2) / (2σ^2)) dx 最后,我们可以利用高斯分布的性质,将上式中的积分项化简为1,得到: M(t) = (1/√(2πσ^2)) * exp(((μ + σ^2t)/(1 - t^2σ^2))^2 - μ^2 / (2σ^2)) 这就是逆高斯分布母函数推导的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值