K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。
1、data:为cv::Mat类型,每行代表一个样本,即特征,即mat.cols=特征长度,mat.rows=样本数,数据类型仅支持float;
2、K:指定聚类时划分为几类;
3、bestLabels:为cv::Mat类型,是一个长度为(样本数,1)的矩阵,即mat.cols=1,mat.rows=样本数;为K-Means算法的结果输出,指定每一个样本聚类到哪一个label中;
4、criteria:TermCriteria类,算法进行迭代时终止的条件,可以指定最大迭代次数,也可以指定预期的精度,也可以这两种同时指定;
5、attempts:指定K-Means算法执行的次数,每次算法执行的结果是不一样的,