导读:随着近两年机器学习、人工智能、云计算等概念愈演愈烈,很多公司都开始寻求AI(Artificial Intelligence)技术突破并应用于相关项目。那么,老售前如何搭上这班AI火箭?不懂算法、不懂公式、不懂开发、不懂应用场景.....
广泛阅读博客、书籍后,作者看得也是一头雾水,不得不服时代发展太快,曾经的编程算法真是小巫见大巫。近些时间想跟正在准备入手AI学习的同胞们谈谈心,借此宝地抒写如下:
1.机器学习分为强化学习和有监督学习。强化学习和监督学习的共同点是两者都需要大量的数据进行训练,但是两者所需要的数据类型不同。监督学习需要的是多样化的标签数据,强化学习需要的是带有回报的交互数据。
2.强化学习是线性代数、概率论、运筹学、优化、信息论等多学科交叉的一门学科,从上个世纪九十年代基本理论体系形成后的近二十年间,发展处各式各样的强化学习算法。直到2016年AlphaGo对决李世石一战成名后,强化学习的概念才真正广为人知。强化学习主要应用于众多带有交互性和决策性问题,比如博弈、游戏、机器人、人机对话等。
作者为理解这些东西查阅各种微积分、强化学习、机器学习、Python、R语言书籍都感觉进步龟速。一晃2-3年就这么一筹莫展中度过。
————————————————————————————————————————————————————————
那么AI说到底如何去学习了?经过查阅各位大神文章,作者总结如下:
1.开发方面可以看看Python、R、Java方面基础及案例。Python是目前呼声较高的AI开发工具。
2.高数方面从微积分、线性代数、概率论统计学入手,推荐看看强化学习方面书籍。
3.多阅读AI落地项目介绍的文章,看看AI到底适合在哪些地方使用。
好了,目前作者也只能介绍到这里了,说的很泛泛,希望一段时间后能更详细跟博友们再次具体技术交流交流。欢迎老售前们来QQ群:935793192【资深IT售前交流学堂】共同学习交流,早日打通AI九脉。