收敛数列的性质

回顾:

定义1.1:

设{ a n a_{n} an}。是一个数列, a是一个实数, 如果对于任意给定的 ε > 0 \varepsilon>0 ε>0,存在一个 N ∈ N ∗ N \in \mathbf{N}^{*} NN,使得凡是n>N时都有
∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ana<ε
,
就说数列{ a n a_{n} an},当n趋向无穷大时以a为极限,记成
lim ⁡ x → ∞ a n = a \lim _{x \rightarrow \infty} a_{n}=a xliman=a
也可以简记为 a n → a ( n → ∞ ) a_{n} \rightarrow a(n \rightarrow \infty) ana(n).我们也说数列{ a n a_{n} an}收缴于a.存在极限的数列称为收敛数列. 不收敛的数列称为发散数列.

定义1.2:

数列{ a n a_{n} an}: 当 n → ∞ n \rightarrow \infty n时收敛于实数 a 是指:对任意的 ε > 0 \varepsilon>0 ε>0,总存在 N ∈ N ∗ N \in \mathbf{N}^{*} NN,使得这数列中除有限多项 a 1 , a 2 , ⋯   , a n a_{1}, a_{2}, \cdots, a_{n} a1,a2,,an可能是例外,其他的项均落在a的 ε \varepsilon ε-邻域中.(我们称关于a对称的开区间 ( α − ε , α + ε ) (\alpha-\varepsilon, \alpha+\varepsilon) (αε,α+ε) 为a的 ε \varepsilon ε-邻域)。

定理1.1:

如果数列{ a n a_{n} an}收敛,则它只有一个极限,也就是说,收敛数列的极限是惟一的.

定义1.3:

设{ a n a_{n} an}是一个数列,如果存在一个实数A,使得 a n ⩽ A a_{n} \leqslant A anA 对一切 N ∈ N ∗ N \in \mathbf{N}^{*} NN成立,则称{ a n a_{n} an}是有上界的,A是这数列的一个上界.
类似地,可以定义有下界的数列.
如果数列{ a n a_{n} an}既有下界又有上界,则称它是一个有界数列。
非常明显的是,数列{ a n a_{n} an}是有界数列必须且只须它的各项全都包含在同一个有限的区间之内.

定理1.2:

收敛数列必是有界的。

证明:当n>N时有 ∣ a n − a ∣ < 1 \left|a_{n}-a\right|<1 ana<1,于是

∣ a n ∣ = ∣ a n − a + a ∣ ⩽ ∣ a n − a ∣ + ∣ a ∣ < 1 + ∣ a ∣ \left|a_{n}\right|=\left|a_{n}-a+a\right| \leqslant\left|a_{n}-a\right|+|a|<1+|a| an=ana+aana+a<1+a

若令 M = ∣ a 1 ∣ + ∣ a 2 ∣ + ⋯ + ∣ a N ∣ + ∣ a ∣ + 1 M=\left|a_{1}\right|+\left|a_{2}\right|+\dots+\left|a_{N}\right|+|a|+1 M=a1+a2++aN+a+1,则对一切 N ∈ N ∗ N \in \mathbf{N}^{*} NN ∣ a n ∣ < M \left|a_{n}\right|<M an<M

定义1.4:

设{ a n a_{n} an}是一个数列, k i ∈ N ∗ ( i = 1 , 2 , 3 , ⋯   ) k_{i} \in \mathbf{N}^{*}(i=1,2,3, \cdots) kiN(i=1,2,3,)且满足 k 1 < k 1 < k 3 ⋯ k_{1}<k_{1}<k_{3} \cdots k1<k1<k3,那么数列 { a k n } \left\{a_{k_{n}}\right\} {akn}叫做{ a n a_{n} an}的一个子列.

由这个定义,{ a n a_{n} an}自身也可以看作是{ a n a_{n} an}的子列.

定理1.3 :

设收敛数列{ a n a_{n} an}的极限是a,那么{ a n a_{n} an}的任何子列都收敛到a.

启发:这个定理告诉我们:如果数列l{ a n a_{n} an}的两个子列收敛于不同的极限,那么数列{ a n a_{n} an}是发散的.这个结论通常被用来证明某个数列是发散的,考察数列
( − 1 ) n \left( -1 \right) ^n (1)n
,显然它是一个有界的数列,但它不是一个收敛数列. 这是因为它的奇数位置上的所有项组成的子数列的极限是1,而偶数位置上的所有项组成的子数列的极限是-1.

定理1.4:

极限的四则运算:设{ a n a_{n} an}与{ b n b_{n} bn}。都是收敛数列,则 ∣ a n ± b n ∣ \left|a_{n} \pm b_{n}\right| an±bn ∣ a n b n ∣ \left|a_{n} b_{n}\right| anbn,也是收敛数列。如果 lim ⁡ x → ∞ b n ≠ 0 \lim _{x \rightarrow \infty} b_{n} \neq 0 limxbn=0,则 { a e b n → } \left\{\begin{array}{l}{a_{e}} \\ {\overrightarrow{b_{n}}}\end{array}\right\} {aebn }也收敛,并且
lim ⁡ x → ∞ ( a n ± b n ) = lim ⁡ n → ∞ a n ± lim ⁡ n → ∞ b n \lim _{x \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n} xlim(an±bn)=nliman±nlimbn

lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ a n ⋅ lim ⁡ n → ∞ b n \lim _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} nlimanbn=nlimannlimbn

lim ⁡ a → ∞ a n b n = lim ⁡ n → ∞ a n lim ⁡ n → ∞ b n ( lim ⁡ n → ∞ b n ≠ 0 ) \lim _{a \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}\left(\lim _{n \rightarrow \infty} b_{n} \neq 0\right) alimbnan=limnbnlimnan(nlimbn=0)

做题经验1.1:

利用已知的一些简单的收敛数列,借助于上述四则运算性质,便可计算更复杂的一些数列的极限,而不需要使用“ ε − N \varepsilon-N εN推理”.

eg1:

lim ⁡ x → ∞ 2 n 2 − 3 n + 4 5 n 2 + 4 n − 1 \lim _{x \rightarrow \infty} \frac{2 n^{2}-3 n+4}{5 n^{2}+4 n-1} xlim5n2+4n12n23n+4

定义1.5 :

如果收敛数列{ a n a_{n} an}的极限等于0,那么这个数列称为无穷小数列,简称无穷小.

定理1.5 :

关于无穷小,有以下的定理:

  1. { a n a_{n} an}为无穷小的必要充分条件是{| a n ∣ a_{n}| an}是无穷小;
  2. 两个无穷小之和(或差)仍是无穷小;
  3. 设{ a n a_{n} an}为无穷小,{ c n c_{n} cn}为有界数列,那么。 ∣ c n a n ∣ \left|c_{\mathrm{n}} a_{\mathrm{n}}\right| cnan也是无穷小;
  4. 0 ⩽ a n ⩽ b n , n ∈ N ∗ 0 \leqslant a_{n} \leqslant b_{n}, n \in \mathbf{N}^{*} 0anbn,nN,如果{ b n b_{n} bn}为无穷小,那么{ a n a_{n} an}也是无穷小;
  5. lim ⁡ x → ∞ a 0 = a \lim _{x \rightarrow \infty} a_{0}=a limxa0=a的必要充分条件是 ∣ a n − a ∣ \left|a_{n}-a\right| ana是无穷小.

定理1.6 :


a n ⩽ b n ⩽ c n , n ∈ N ∗ a_{n} \leqslant b_{n} \leqslant c_{n}, n \in \mathbf{N}^{*} anbncn,nN

lim ⁡ x → ∞ a x = lim ⁡ n → ∞ c n = a \lim _{x \rightarrow \infty} a_{x}=\lim _{n \rightarrow \infty} c_{n}=a xlimax=nlimcn=a

lim ⁡ x → ∞ b n = a \lim _{x \rightarrow \infty} b_{n}=a xlimbn=a

定理1.7 :

  1. lim ⁡ n → ∞ a n = a , α , β \lim _{n \rightarrow \infty} a_{n}=a, \alpha, \beta limnan=a,α,β 满足 α < a < β \alpha<a<\beta α<a<β ,那么当n 充分大时有 ;

a n > α a_n>\alpha an>α

​ 同样,当n 充分大时有:
a n < β a_n<\beta an<β

  1. lim ⁡ n → ∞ a n = a , lim ⁡ n → ∞ b n = b \lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b limnan=a,limnbn=b 且a<b,那么当n充分大时一定有:
    a n < b n a_{n}<b_{n} an<bn

  2. lim ⁡ n → ∞ a n = a , lim ⁡ n → ∞ b n = b \lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b limnan=a,limnbn=b 且当n充分大时 a n < b n a_{n}<b_{n} an<bn,则有:
    a ≤ b a\le b ab

common MATLAB functions relating to limits

%% Calculates the limit of the sequence, indicated by its general term, %% as n tends to infinity
syms n
limit(((2*n-3)/(3*n-7))^4, n,inf)
%% Calculates the limit of the function of the variable x, as the variable x tends towards the value a
limit((x-1)/(x^(1/2)-1),1)
%% Calculates the limit of the function of the variable x, as the variable x tends towards the value a
syms x
limit((x-1)/(x^(1/2)-1),x,1)
%% Calculates the limit of the function of the variable x, indicated by its analytical expression, as the variable x tends to a from the right
syms x
limit((exp(1/x)),x,0,'right')
%% Calculates the limit of the function of the variable x, indicated by its analytical expression, as the variable x tends to a from the left
>> limit((exp(1/x)),x,0,'left')
%% 总结matlab的极限函数:
limit (sequence, inf)
limit(function, x, a)
limit(function, a)
limit (function, x, a,‘right’)
limit (function, x, a, ‘left’)

练习:

>> syms n
>> limit(((n+3)/(n-1))^n, inf)
ans =
exp(4)
>> limit((1-2/(n+3))^n, inf)
ans =
1/exp(2)
>> limit((1/n)^(1/n), inf)
ans =
1
>> limit(((n+1)^(1/3)-n^(1/3))/((n+1)^(1/2)-n^(1/2)),inf)
ans =
0
>> limit((n^n*exp(-n)*sqrt(2*pi*n))/n^n, n,inf)
ans =
0
>> limit(abs(x)/sin(x),x,0)
ans =
NaN
>> syms x
>> limit(abs(x)/sin(x),x,0)
ans =
NaN
>> limit(abs(x)/sin(x),x,0,'left')
ans =
-1
>> limit(abs(x)/sin(x),x,0,'right')
ans =
1
>> limit(abs(x^2-x-7),x,3)
ans =
1
>> limit((x-1)/(x^n-1),x,1)
ans =
1/n
>> limit(exp(1)^(1/x),x,0)
ans =
NaN

原文阅读
关于作者: 公众号:从零归一。所有数学资源和自身总结可以关注公众号,回复“数学”,免费下载。

<think>好的,我需要回答关于斐波那契数列数学性质的问题。首先,用户意图是了解其数学性质,所以得覆盖定义、递推公式、通项公式、黄金分割关系、矩阵形式以及模周期性质。 先回忆斐波那契的基础知识,起始项是0和1,或1和1,这点可能需要查证。然后递推公式F(n)=F(n-1)+F(n-2)。通项公式是Binet公式,涉及黄金分割的幂次方,需要确认公式是否正确,可能有√5在里面。 黄金分割比例方面,斐波那契相邻两项的比值趋近于黄金比例φ=(1+√5)/2,这个是正确的,但需要说明极限情况。还有矩阵形式,可以用矩阵乘法表示递推,可能的结构是[[1,1],[1,0]]的幂次。 模周期性质,即皮萨诺周期,不同模数下斐波那契数列会周期性重复,可能需要举例子,比如模2的周期是3。 接下来需要网络搜索确认细节是否正确,比如起始项的定义是否有不同版本,通项公式的具体形式,矩阵表示的具体矩阵,以及皮萨诺周期的例子是否正确。 搜索后确认,斐波那契通常以F(0)=0,F(1)=1开始。通项公式是F(n)=(φ^n - ψ^n)/√5,其中ψ是(1-√5)/2。矩阵形式正确,使用[[1,1],[1,0]]的n-1次幂得到F(n)。模周期部分,比如模2的周期确实是3,0,1,1,0,1,1,... 整理这些信息,按照用户的要求分方法或步骤,避免使用第一人称和步骤词汇,每个部分换行。注意数学公式的格式,行内用$,独立用$$。代码部分如果有的话要用三个反引号,但这里可能不需要代码。 最后生成相关问题,要基于原问题,可能涉及应用、通项推导、黄金分割证明、模运算性质等。</think>斐波那契数列定义为 $F_0=0$, $F_1=1$,后续项满足递推关系 $F_n=F_{n-1}+F_{n-2}$。其数学性质包含以下核心特征: **递推与通项公式** 通项公式(Binet公式)可表示为: $$F_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$$ 其中 $\phi=\frac{1+\sqrt{5}}{2}$(黄金分割率),$\psi=\frac{1-\sqrt{5}}{2}$。该公式通过特征方程 $x^2=x+1$ 的根导出。 **黄金分割关系** 相邻项比值收敛于黄金分割率: $$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \phi$$ 该性质源于递推关系的特征根分析,$\phi$ 是特征方程的最大根。 **矩阵表示与快速计算** 斐波那契数列可用矩阵幂表示: $$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$ 此形式为快速幂算法提供了理论基础,计算复杂度可降低至 $O(\log n)$。 **模周期性(Pisano周期)** 对任意正整数 $m$,斐波那契数列模 $m$ 的余数列具有周期性。例如模 $2$ 的周期为 $3$,序列为 $0,1,1,0,1,1,\ldots$。该性质在密码学和随机数生成中有应用。 **加法与数论性质** 满足加法公式 $F_{m+n}=F_{m+1}F_n + F_mF_{n-1}$,以及 $\gcd(F_m,F_n)=F_{\gcd(m,n)}$。这些性质在组合数学和算法分析中具有重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值