异常检测(Anomaly Detection)是识别数据中异常或异常模式的技术,广泛应用于金融欺诈检测、网络入侵检测和工业设备故障检测等领域。自编码器(Autoencoder)是异常检测的经典方法,而生成对抗网络(GAN)则通过引入生成器和判别器进一步提升了检测性能。本文将通过一个完整的实战案例,展示如何使用自编码器和GAN进行异常检测,并提供详细的代码实现。
案例背景
我们选择对工业设备的传感器数据进行异常检测作为案例,目标是识别设备运行中的异常状态。
代码实现
1. 环境准备
首先,安装所需的Python库:
pip install torch numpy pandas matplotlib
2. 数据准备
加载工业设备的传感器数据并进行预处理:
import numpy as