基于深度学习的异常检测实战:从自编码器到GAN

异常检测(Anomaly Detection)是识别数据中异常或异常模式的技术,广泛应用于金融欺诈检测、网络入侵检测和工业设备故障检测等领域。自编码器(Autoencoder)是异常检测的经典方法,而生成对抗网络(GAN)则通过引入生成器和判别器进一步提升了检测性能。本文将通过一个完整的实战案例,展示如何使用自编码器和GAN进行异常检测,并提供详细的代码实现。


案例背景

我们选择对工业设备的传感器数据进行异常检测作为案例,目标是识别设备运行中的异常状态。


代码实现

1. 环境准备

首先,安装所需的Python库:

pip install torch numpy pandas matplotlib

2. 数据准备

加载工业设备的传感器数据并进行预处理:

import numpy as 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值