深度解析谷歌TPU架构:从硬件原理到AI模型优化实战
引言:TPU为何成为AI加速的王者
在AI算力需求呈指数级增长的今天,谷歌的TPU(Tensor Processing Unit)已经发展成为与GPU分庭抗礼的专用加速器。本文将深入剖析TPU的硬件架构设计哲学,并通过完整的代码示例展示如何最大化发挥TPU的性能潜力。我们将重点聚焦第六代Trillium和第七代Ironwood的架构创新,并演示如何将理论转化为实际性能提升。
一、TPU核心架构解密
1.1 矩阵计算单元(MXM)的设计艺术
TPU最核心的MXM单元是专门为矩阵乘法优化的硬件电路。以Ironwood为例,其MXM单元采用创新的"脉动阵列"设计:
// 简化的脉动阵列伪代码
void systolic_array(float input_fifo[M][