TensorFlow内置API整理

tf.range

创建一串数字序列:

tf.range(limit, delta=1, dtype=None, name='range')
tf.range(start, limit, delta=1, dtype=None, name='range')

创建一系列从start开始,到limit结束但是不包括limit的数字序列,序列的间隔为delta;

返回的tensor类型由dtype参数指定,如果没有明确指定,tensor类型由start或者limit的类型推测而来;

用法和python的内置函数range相同,start的默认值为0,所以 range(n)和 range(0,n)返回相同的数列。

For Example:

start = 3
limit = 18
delta = 3
tf.range(start, limit, delta)  # [3, 6, 9, 12, 15]

start = 3
limit = 1
delta = -0.5
tf.range(start, limit, delta)  # [3, 2.5, 2, 1.5]

limit = 5
tf.range(limit)  # [0, 1, 2, 3, 4]

对应numpy的arange函数。

tf.transpose

对矩阵进行转置操作:

tf.transpose(
    a,
    perm=None,
    name='transpose',
    conjugate=False
)

根据参数perm置换a的维度并返回新的Tensor,如果perm为None,则根据perm = (n-1,  ... , 0)进行操作,n为a的秩,如果conjugate为true,并且a.dtype为complex64或者complex32,则返回a的转置共轭。

For Example:

x = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.transpose(x)  # [[1, 4]
                 #  [2, 5]
                 #  [3, 6]]

# Equivalently
tf.transpose(x, perm=[1, 0])  # [[1, 4]
                              #  [2, 5]
                              #  [3, 6]]

# If x is complex, setting conjugate=True gives the conjugate transpose
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
                 [4 + 4j, 5 + 5j, 6 + 6j]])
tf.transpose(x, conjugate=True)  # [[1 - 1j, 4 - 4j],
                                 #  [2 - 2j, 5 - 5j],
                                 #  [3 - 3j, 6 - 6j]]

# 'perm' is more useful for n-dimensional tensors, for n > 2
x = tf.constant([[[ 1,  2,  3],
                  [ 4,  5,  6]],
                 [[ 7,  8,  9],
                  [10, 11, 12]]])

# Take the transpose of the matrices in dimension-0
# (this common operation has a shorthand `linalg.matrix_transpose`)
tf.transpose(x, perm=[0, 2, 1])  # [[[1,  4],
                                 #   [2,  5],
                                 #   [3,  6]],
                                 #  [[7, 10],
                                 #   [8, 11],
                                 #   [9, 12]]]

tf的transpose和numpy的transpose有所不同,numpy的transpose操作是内存高效且在常数时间复杂度完成的操作,不会涉及到数据的拷贝。 TensorFlow返回的是一个转置之后新的Tensor。

tf.transpose可用于进行TensorFlow的数据格式转化,tensorflow的很多函数都有参数指定data_format,默认值为'NHWC',但是还有一种格式为'NCHW',N:批次中的图像数量,C:图像的通道数量, H:图像的高度, W:图像的宽度。

NHWC 的访存局部性更好(每三个输入像素即可得到一个输出像素),NCHW 则必须等所有通道输入准备好才能得到最终输出结果,需要占用较大的临时空间

在 CNN 中常常见到 1x1 卷积(例如:用于移动和嵌入式视觉应用的 MobileNets),也是每个输入 channel 乘一个权值,然后将所有 channel 结果累加得到一个输出 channel。如果使用 NHWC 数据格式,可以将卷积计算简化为矩阵乘计算,即 1x1 卷积核实现了每个输入像素组到每个输出像素组的线性变换

TensorFlow 为什么选择 NHWC 格式作为默认格式?因为早期开发都是基于 CPU,使用 NHWC 比 NCHW 稍快一些(不难理解,NHWC 局部性更好,cache 利用率高)。

NCHW 则是 Nvidia cuDNN 默认格式,使用 GPU 加速时用 NCHW 格式速度会更快(也有个别情况例外)。

最佳实践:设计网络时充分考虑两种格式,最好能灵活切换,在 GPU 上训练时使用 NCHW 格式,在 CPU 上做预测时使用 NHWC 格式。

NHWC到NCHW

perm[0] = 0  # output dimension 0 will be 'N', which was dimension 0 in the input
perm[1] = 3  # output dimension 1 will be 'C', which was dimension 3 in the input
perm[2] = 1  # output dimension 2 will be 'H', which was dimension 1 in the input
perm[3] = 2  # output dimension 3 will be 'W', which was dimension 2 in the input
images_nhwc = tf.placeholder(tf.float32, [None, 200, 300, 3])  # input batch
out = tf.transpose(x, [0, 3, 1, 2])
print(out.get_shape())  # the shape of out is [None, 3, 200, 300]

从NCHW到NHWC

perm[0] = 0  # output dimension 0 will be 'N', which was dimension 0 in the input
perm[1] = 2  # output dimension 1 will be 'H', which was dimension 2 in the input
perm[2] = 3  # output dimension 2 will be 'W', which was dimension 3 in the input
perm[3] = 1  # output dimension 3 will be 'C', which was dimension 1 in the input
images_nchw = tf.placeholder(tf.float32, [None, 3, 200, 300])  # input batch
out = tf.transpose(x, [0, 2, 3, 1])
print(out.get_shape())  # the shape of out is [None, 200, 300, 3]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值