1.电荷和电场
1.1 静电,电荷及其保护
电荷守恒定律
在任何过程中,产生的电荷量的净变化为零。
例如,当用一条毛巾摩擦一个塑料尺子时,该塑料获得一个负电荷,而该毛巾获得一个等量的正电荷。电荷是分开的,但两者的和是零。
1.4感应电荷和验电器
在带电棒没有接触验电器时,此时无论电荷还是验电器中的电荷不变,体现同性相斥,异性相吸。
在带电棒接触验电器后,正负电荷进行中和。
1.5库仑定律
F = k Q 1 Q 2 R 2 F=k\frac{Q_1Q_2}{R^2} F=kR2Q1Q2
常数 k ≈ 9.0 × 1 0 9 N ⋅ m 2 / C 2 k\approx 9.0 \times 10^9N·m^2/C^2 k≈9.0×109N⋅m2/C2
元电荷 e = 1602 × 1 0 − 19 C e=1602 \times 10^{-19}C e=1602×10−19C
介电常数(permittivity)
在等式中的常数k通常用另一个常数(介电常数)$\epsilon_0 $来写
F
=
1
4
π
ϵ
0
Q
1
Q
2
r
2
F=\frac{1}{4 \pi \epsilon_0 }\frac{Q_1Q_2}{r^2}
F=4πϵ01r2Q1Q2
ϵ 0 = 1 4 π k = 8.85 × 1 0 − 12 C 2 / N ⋅ m 2 \epsilon_0 =\frac{1}{4 \pi k}=8.85 \times 10^{-12}C^2/N·m^2 ϵ0=4πk1=8.85×10−12C2/N⋅m2
常见题型
在一条直线有三个电荷,对其中的某一个电荷进行受力分析
1.6 电场
假设在电场中有一试验电荷P
那么此电荷所在的电场强度E由下式计算。
E
=
F
q
=
k
q
Q
/
r
2
q
E=\frac{F}{q} =\frac{kqQ/r^2}{q}
E=qF=qkqQ/r2
E = k Q r 2 E= k\frac{Q}{r^2} E=kr2Q
E = 1 4 π ϵ 0 Q r 2 E=\frac{1}{4 \pi \epsilon_0} \frac{Q}{r^2} E=4πϵ01r2Q
1.7连续电荷分布的电场强度计算
在很多情况下,我们可以处理连续分布的电荷,可以把分布的电荷分隔成无限小的电荷元dQ,它们每个都相当于一个微小电荷。每个dQ在相距为r的地方对电场强度的贡献为
d
E
=
1
4
π
ϵ
0
d
Q
r
2
dE=\frac{1}{4 \pi \epsilon_0}\frac{dQ}{r^2}
dE=4πϵ01r2dQ
电场强度E为所有这些无限小电荷的贡献累加,即为积分
E
=
∫
d
E
E = \int dE
E=∫dE
经典题型
电荷环,均匀带电的圆盘,两块平行板
无限大平面
如果圆盘的半径远远大于P点到盘的距离(例如,
z
≪
R
z \ll R
z≪R)那么我们可以得到一个结果
E
=
σ
2
ϵ
0
,
E = \frac{\sigma }{2 \epsilon_0},
E=2ϵ0σ,
1.8电场线
-
电场线的方向
-
大小问题–电场线的疏密
-
电场的起始问题
(起于正电荷(或者无穷远)
-
电场线不交叉,不相接
1.9电场及导体
如图,一个在中性金属球壳内的电荷在金属球壳表面感应出电荷。电场在球壳外也存在,但是在导体内不存在。
1.10带电粒子在电场中的运动
经典题型
被加速的电子,如右图所示
1.11电偶极子(Electric Dipole Potentical)
牢记力矩的定义与公式
力矩是以施力大小与力臂的乘积衡量物体的转动效果
M
=
F
×
L
M=F \times L
M=F×L
在外电场中的电偶极子
电场是均匀的,在正电荷上的力QE和负电荷上的力-QE将使得作用在电偶极子的合力为零名单上却又一个力矩作用其上。
τ
=
Q
E
l
2
s
i
n
θ
+
Q
E
l
2
s
i
n
θ
=
p
E
s
i
n
θ
\tau =QE \frac{l}{2}sin \theta + QE \frac{l}{2}sin\theta=pEsin\theta
τ=QE2lsinθ+QE2lsinθ=pEsinθ
上式可用矢量表示为
τ
=
p
×
E
×
s
i
n
θ
\tau = p \times E \times sin\theta
τ=p×E×sinθ
当 θ = 90 \theta=90 θ=90时力矩值最大, θ = 180 \theta=180 θ=180势能最大此时E和p时反向平行的
稳态和亚稳态
共同点
1,长期稳定存在
2,合力为零
差别
稳态:给一个非常小的干扰,能保持稳态
亚稳态:给一个非常小的干扰,不能保持稳态
总结:
关于电场中的问题分析,一共有四点
1.作图和确定方向(draw a careful diagram)
对于受力物体的力和方向的进行作图分析,确定电子在电场中的方向。
2.应用库伦定理(apply coulomb’s law)
用库伦定理求出每个电荷所产生的力的大小施加在一个带电物体上。
3.添加向量(add vectorially and use symmetry)
在几何图形中尽可能用向量表示
4.检查(check the reasonableness)