大学物理三-----电磁学(电荷与磁场)

本文介绍了电荷守恒定律,通过摩擦产生静电的例子来说明。讨论了感应电荷和验电器的工作原理,以及库仑定律,详细阐述了电场强度的计算方法。电偶极子在电场中的行为和力矩的概念也被提及,同时提到了带电粒子在电场中的运动和稳态与亚稳态的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.电荷和电场

1.1 静电,电荷及其保护

电荷守恒定律

在任何过程中,产生的电荷量的净变化为零。

例如,当用一条毛巾摩擦一个塑料尺子时,该塑料获得一个负电荷,而该毛巾获得一个等量的正电荷。电荷是分开的,但两者的和是零。

 

1.4感应电荷和验电器

在带电棒没有接触验电器时,此时无论电荷还是验电器中的电荷不变,体现同性相斥,异性相吸。

在带电棒接触验电器后,正负电荷进行中和。

 

1.5库仑定律

F = k Q 1 Q 2 R 2 F=k\frac{Q_1Q_2}{R^2} F=kR2Q1Q2

常数 k ≈ 9.0 × 1 0 9 N ⋅ m 2 / C 2 k\approx 9.0 \times 10^9N·m^2/C^2 k9.0×109Nm2/C2

元电荷 e = 1602 × 1 0 − 19 C e=1602 \times 10^{-19}C e=1602×1019C

介电常数(permittivity)

在等式中的常数k通常用另一个常数(介电常数)$\epsilon_0 $来写
F = 1 4 π ϵ 0 Q 1 Q 2 r 2 F=\frac{1}{4 \pi \epsilon_0 }\frac{Q_1Q_2}{r^2} F=4πϵ01r2Q1Q2

ϵ 0 = 1 4 π k = 8.85 × 1 0 − 12 C 2 / N ⋅ m 2 \epsilon_0 =\frac{1}{4 \pi k}=8.85 \times 10^{-12}C^2/N·m^2 ϵ0=4πk1=8.85×1012C2/Nm2

常见题型

在一条直线有三个电荷,对其中的某一个电荷进行受力分析

 

1.6 电场

假设在电场中有一试验电荷P
在这里插入图片描述

那么此电荷所在的电场强度E由下式计算。
E = F q = k q Q / r 2 q E=\frac{F}{q} =\frac{kqQ/r^2}{q} E=qF=qkqQ/r2

E = k Q r 2 E= k\frac{Q}{r^2} E=kr2Q

E = 1 4 π ϵ 0 Q r 2 E=\frac{1}{4 \pi \epsilon_0} \frac{Q}{r^2} E=4πϵ01r2Q

 

 

1.7连续电荷分布的电场强度计算

在很多情况下,我们可以处理连续分布的电荷,可以把分布的电荷分隔成无限小的电荷元dQ,它们每个都相当于一个微小电荷。每个dQ在相距为r的地方对电场强度的贡献为
d E = 1 4 π ϵ 0 d Q r 2 dE=\frac{1}{4 \pi \epsilon_0}\frac{dQ}{r^2} dE=4πϵ01r2dQ
电场强度E为所有这些无限小电荷的贡献累加,即为积分
E = ∫ d E E = \int dE E=dE

经典题型

电荷环,均匀带电的圆盘,两块平行板

 

 

无限大平面

如果圆盘的半径远远大于P点到盘的距离(例如, z ≪ R z \ll R zR)那么我们可以得到一个结果
E = σ 2 ϵ 0 , E = \frac{\sigma }{2 \epsilon_0}, E=2ϵ0σ,
 

 

1.8电场线

  1. 电场线的方向

  2. 大小问题–电场线的疏密

  3. 电场的起始问题

    (起于正电荷(或者无穷远)

  4. 电场线不交叉,不相接

 

 

1.9电场及导体

在这里插入图片描述

如图,一个在中性金属球壳内的电荷在金属球壳表面感应出电荷。电场在球壳外也存在,但是在导体内不存在。

1.10带电粒子在电场中的运动

经典题型

被加速的电子,如右图所示

在这里插入图片描述

 

1.11电偶极子(Electric Dipole Potentical)

牢记力矩的定义与公式

力矩是以施力大小力臂的乘积衡量物体的转动效果
M = F × L M=F \times L M=F×L
在这里插入图片描述

在外电场中的电偶极子

电场是均匀的,在正电荷上的力QE和负电荷上的力-QE将使得作用在电偶极子的合力为零名单上却又一个力矩作用其上。
τ = Q E l 2 s i n θ + Q E l 2 s i n θ = p E s i n θ \tau =QE \frac{l}{2}sin \theta + QE \frac{l}{2}sin\theta=pEsin\theta τ=QE2lsinθ+QE2lsinθ=pEsinθ
上式可用矢量表示为
τ = p × E × s i n θ \tau = p \times E \times sin\theta τ=p×E×sinθ
 

 

θ = 90 \theta=90 θ=90时力矩值最大, θ = 180 \theta=180 θ=180势能最大此时E和p时反向平行的

稳态和亚稳态

共同点

1,长期稳定存在

2,合力为零

 

差别

稳态:给一个非常小的干扰,能保持稳态

亚稳态:给一个非常小的干扰,不能保持稳态

总结:

关于电场中的问题分析,一共有四点

1.作图和确定方向(draw a careful diagram)

对于受力物体的力和方向的进行作图分析,确定电子在电场中的方向。

2.应用库伦定理(apply coulomb’s law)

用库伦定理求出每个电荷所产生的力的大小施加在一个带电物体上。

3.添加向量(add vectorially and use symmetry)

在几何图形中尽可能用向量表示

4.检查(check the reasonableness)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

y江江江江

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值