秩为1的矩阵的幂规律

首先看规律:矩阵A的任何两行或者两列都成比例,可以提出比例系数,则矩阵A可以分解为两个矩阵的乘积。更一般情况是:若r(A) = 1,则A可以分解为两个矩阵的乘积。

规律知道以后,具体的乘积因子该如何确定呢?

看例题:

A=264132132

分析这个矩阵可以看到第二行是第一行的3倍,第三行是第一行的-2倍。
这个3x3的矩阵可以由3x1,1x3的两个矩阵得到。那么这个3x1的矩阵每一行的唯一一个数便是倍数。所以倍数构成的向量乘以第一行元素组成的向量的转置之积即为所求。

这种说法其实不适合直接记忆,要从上面的分析思路来。毕竟形式只是内容的载体。

因此:

A=132[211]

从而:
A2=132[211]132[211]
其中中间两项乘起来恰好是一个数:2+3+2=7,同时也恰恰是原矩阵的主对角线之和,这个也称作迹。

A2=7A ,则任意的 An 便可求。
归纳过程:
A3=A2A=7A2=72A,
A4=A2A2=7A7A=72A2=73A
An=7n1A

对于一般情况下:
A=a1b1a2b1a3b1a1b2a2b2a3b2a1b3a2b3a3b3
是否可以看出每行都是 bi 的倍数。

也即:

A=a1a2a3[b1b2b3]

换比较数学的记述方式:
α=a1a2a3
βT=[b1b2b3]

即:
A=αβT

αTβ=βTα=a1b1+a2b2+a3b3,A

这一类的题目大多数是如此解法,总结在这里。同时这也只是特殊矩阵的一小类。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值