kA*与(kA)*的行列式计算

A是n阶矩阵,求|kA*|的大小。

分析:

AA=|A|E,|AA|=|A|n,|A|=|A|n1,|kA|=kn|A|n1

以上是|kA*|的推导,其实就是简单的提出 kn 来,主要工作是对A*求行列式。

而(kA)*的行列式,要求就不同了。

(kA)(kA)=|kA|E=kn|A|E=knAA,(kA)=kn1A,A1,|(kA)|=|kn1A|

这是个很重要的性质,两个的区别也是很重要的关系。

  • 21
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
行列式是一个非常重要的概念,它是线性代数中的一个基础知识点。下面是关于行列式的性质和初等变换的介绍: 1. 行列式的定义:对于一个 $n$ 阶方阵 $A=(a_{ij})$,它的行列式定义为 $|A|=\sum_{\sigma\in S_n}(-1)^{\sigma}a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$,其中 $S_n$ 表示 $n$ 个元素的置换群,$\sigma$ 是 $S_n$ 中的一个置换,$(-1)^{\sigma}$ 表示置换 $\sigma$ 的奇偶性。 2. 行列式的性质: - 行列式与它的转置矩阵的行列式相等,即 $|A|=|A^T|$。 - 如果矩阵 $A$ 的某一行(或某一列)全为 $0$,则 $|A|=0$。 - 如果矩阵 $A$ 的两行(或两列)交换,则行列式变号,即 $|A|=-|A'|$,其中 $A'$ 是交换后的矩阵。 - 如果矩阵 $A$ 的某一行(或某一列)乘以一个数 $k$,则行列式也乘以 $k$,即 $|kA|=k^n|A|$,其中 $n$ 是矩阵的阶数。 - 如果矩阵 $A$ 的某一行(或某一列)加上另一行(或另一列)的 $k$ 倍,则行列式不变,即 $|A|=|A'|$,其中 $A'$ 是变换后的矩阵。 3. 初等变换:对于一个矩阵 $A$,我们可以通过三种基本的初等变换来得到一个新的矩阵 $B$,它们分别是: - 交换矩阵的两行(或两列); - 用一个非零数 $k$ 乘矩阵的某一行(或某一列); - 把矩阵的某一行(或某一列)加上另一行(或另一列)的 $k$ 倍。 通过这些初等变换,我们可以把一个矩阵变成一个行阶梯形矩阵或者一个简化的行阶梯形矩阵,从而方便计算它的行列式和求解线性方程组。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值