距离徙动原理

本文详细解释了雷达与目标间的距离计算模型,涉及停跳模型下的距离近似、信号处理过程中的匹配滤波和频域表达,重点介绍了Keystone变换如何补偿目标的运动导致的距离徙动问题,以及常见的实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雷达与目标之间的距离可以表示为 R ( t ) = R 0 + v t R(t)=R_0+vt R(t)=R0+vt,其中 R 0 R_0 R0表示目标与雷达之间的初始距离, v v v为目标的速度,采用停跳模型时, R ( t ) R(t) R(t)可以近似表示为 R ( t m ) = R 0 + v t m R(t_m)=R_0+vt_m R(tm)=R0+vtm,其中 t m t_m tm表示慢时间。设发射信号为 s ( t ) = a ( t ) e i 2 π f c t s(t)=a(t)e^{i2\pi f_c t} s(t)=a(t)ei2πfct,其中 a ( t ) a(t) a(t)为基带信号, f c f_c fc为载波频率,则雷达接收并下变频处理后的基带信号可以表示为:
s r ( t ) = a [ t − τ ( t m ) ] e − i 2 π f c τ ( t m ) (1) s_r(t)=a[t-\tau(t_m)]e^{-i2\pi f_c \tau(t_m)} \tag{1} sr(t)=a[tτ(tm)]ei2πfcτ(tm)(1)

其中 τ ( t m ) = 2 R ( t m ) / c \tau(t_m)=2R(t_m)/c τ(tm)=2R(tm)/c表示目标时延。(1)对应的目标回波频域表达式为
S r ( f ) = A ( f ) e − i 2 π ( f + f c ) τ ( t m ) (2) S_r(f)=A(f)e^{-i2\pi (f+f_c) \tau(t_m)} \tag{2} Sr(f)=A(f)ei2π(f+fc)τ(tm)(2)
波形 a ( t ) a(t) a(t)对应的匹配滤波器的频率响应为 H ( f ) = A ∗ ( f ) H(f)=A^ * (f) H(f)=A(f),所以 s r ( t ) s_r(t) sr(t)经过匹配滤波器后的输出信号频域表达式可以表示为
S M ( f ) = S r ( f ) H ( f ) = ∣ A ( f ) ∣ 2 e − i 2 π ( f + f c ) τ ( t m ) = ∣ A ( f ) ∣ 2 e − i 2 π ( f + f c ) τ 0 e − i 4 π ( f + f c ) v t m / c (3) S_M(f)=S_r(f)H(f)=|A(f)|^2 e^{-i2\pi (f+f_c) \tau(t_m)}= |A(f)|^2 e^{-i2\pi (f+f_c) \tau_0}e^{-i4\pi (f+f_c) vt_m/c} \tag{3} SM(f)=Sr(f)H(f)=A(f)2ei2π(f+fc)τ(tm)=A(f)2ei2π(f+fc)τ0ei4π(f+fc)vtm/c(3)
其中 τ 0 = 2 R 0 / c \tau_0=2R_0/c τ0=2R0/c表示目标与雷达初始距离对应的时延。对(3)进行逆傅里叶变换可以得到
s m ( r ) = p s f [ r − R ( t m ) ] e − i 2 π f c τ ( t m ) (4) s_m(r)={\rm psf}[r-R(t_m)]e^{-i2\pi f_c \tau(t_m)} \tag{4} sm(r)=psf[rR(tm)]ei2πfcτ(tm)(4)
其中 p s f ( t ) = I F F T ( ∣ A ( f ) ∣ 2 ) {\rm psf}(t)={\rm IFFT}(|A(f)|^2) psf(t)=IFFT(A(f)2)表示点散射函数,它是由发射波形的自相关函数决定的,需要注意的是(4)中 p s f {\rm psf} psf函数中的变量直接设置为距离 r r r而不是时间 t t t,因为时延 t t t和距离 r r r之间存在一一对应的关系,所以这边没有进行详细的区分。从(4)可以知道,雷达回波的匹配滤波输出将在时延为 R ( t m ) R(t_m) R(tm)处形成峰值。由于 R ( t m ) = R 0 + v t m R(t_m)=R_0+vt_m R(tm)=R0+vtm,当 v = 0 v=0 v=0时, R ( t m ) = R 0 R(t_m)=R_0 R(tm)=R0,此时目标与雷达之间的位置保持不变,当 v t m < Δ R / 2 vt_m < \Delta R/2 vtm<ΔR/2,其中 Δ R \Delta R ΔR表示雷达的距离分辨率,目标在相干积累时间内的不存在距离徙动现象。从上面的分析可以看出,当目标的运动速度较快,或者雷达积累时间较长时,可能出现距离距离徙动现象,具体表现为在多个距离单元上均形成目标峰值,此时目标能量分散到多个距离单元上,不能很好地实现积累,因此通常需要进行距离徙动补偿。
Keystone变换是最常用的距离徙动补偿方法,下面简单介绍一下它的基本思想:
从(3)可以看出发生距离徙动的原因是 f f f t m t_m tm之间的耦合,若能将二者解耦即可实现距离徙动的补偿,所以对(3)式,KT变换采用了变量替换的方法,即令 t m = f c f + f c b m t_m=\frac{f_c}{f+f_c}b_m tm=f+fcfcbm,将该变换代入(3)可以得到:
S M ( f ) = ∣ A ( f ) ∣ 2 e − i 2 π ( f + f c ) τ 0 e − i 4 π ( f + f c ) v t m / c = ∣ A ( f ) ∣ 2 e − i 2 π ( f + f c ) τ 0 e − i 4 π f c v b m / c = ∣ A ( f ) ∣ 2 e − i 2 π f c τ ( b m ) e − i 2 π f τ 0 (5) S_M(f)=|A(f)|^2 e^{-i2\pi (f+f_c) \tau_0}e^{-i4\pi (f+f_c) vt_m/c}=|A(f)|^2 e^{-i2\pi (f+f_c) \tau_0}e^{-i4\pi f_c vb_m/c}=|A(f)|^2 e^{-i2\pi f_c \tau(b_m)}e^{-i2\pi f\tau_0} \tag{5} SM(f)=A(f)2ei2π(f+fc)τ0ei4π(f+fc)vtm/c=A(f)2ei2π(f+fc)τ0ei4πfcvbm/c=A(f)2ei2πfcτ(bm)ei2πfτ0(5)
在上面的表达式中有 τ ( b m ) = 2 ( R 0 + v b m ) / c \tau(b_m)=2(R_0+vb_m)/c τ(bm)=2(R0+vbm)/c,对(5)进行逆傅里叶变换可以得到:
S M ( f ) = p s f ( r − R 0 ) e − i 2 π f c τ ( b m ) (6) S_M(f)={\rm psf}(r-R_0)e^{-i2\pi f_c \tau(b_m)} \tag{6} SM(f)=psf(rR0)ei2πfcτ(bm)(6)
可以得到此时目标只会在 R 0 R_0 R0处形成峰值,峰值位置并不会随着慢时间的变换而变化,所以距离徙动得到了有效的补偿。
从上面对KT算法的介绍可以看出,KT算法实际上是对慢时间维进行的变换,即将数据由原来的 f − t m f-t_m ftm平面转化为 f − b m f-b_m fbm的平面,其转化的示意图如下图所示,可以看出原始平面中 t m t_m tm的范围不随频率 f f f变化,所以呈现矩形的形式,在 f − b m f-b_m fbm平面上,随着频率 f f f的增大, b m b_m bm的范围也逐渐变大,所以 b m b_m bm呈现倒梯形的形式。目前KT算法的常用实现方法主要包括DFT-IFFT算法、sinc函数内插算法、Chirp-Z变换法等,具体可参考文献[3][4][5]。

图1 KT变换示意图

参考文献
[1] Estimation and Classification of Polynominal-Phase Signals
[2] Hybrid FM-Polynomial Phase Signal Modeling: Parameter Estimation and Cramer-Rao Bounds
[3] 基于Keystone变换的弱目标积累检测及工程实现方法
[4] 基于Keystone变换的微弱目标检测
[5] Keystone变换方法研究
[6] Radar Sidelobe Suppression Using Nearly-Orthognal Waveforms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值