基于麻雀算法优化的相关向量机RVM回归预测算法

基于麻雀算法优化的相关向量机RVM回归预测算法


摘要:本文主要介绍相关向量机RVM的基本原理,以及在预测问题中的应用。

1.RVM原理

RVM算法是一种基于贝叶斯框架的机器学习模型 ,通过最大化边际似然得到相关向量和权重。

{ x } u = 1 N \{x\}_{u=1}^N {x}u=1N​和 { t } u = 1 N \{t\}_{u=1}^N {t}u=1N​分别是输入向量和输出向量,目标 t t t​可采用如式(1)所示的回归模型获得:
t = y ( x ) + ξ n (1) t =y(x)+\xi_n \tag{1} t=y(x)+ξn(1)
式中: ξ n \xi_n ξn为零均值、方差 σ 2 σ^2 σ2的噪声, y ( x ) y(x) y(x) 定义为:
y ( x ) = ∑ u = 1 N w u K ( x , x u ) + w 0 (2) y(x)=\sum_{u=1}^Nw_uK(x,x_u)+w_0 \tag{2} y(x)=u=1NwuK(x,xu)+w0(2)
式中: K ( x , x u ) K(x,x_u) K(x,xu) 是核函数, w u w_u wu 是权重向量, w 0 w_0 w0是偏差。设 t t t​是独立的,其概率定义为:
p ( t ∣ w , σ 2 ) = ( 2 π σ 2 ) − N / 2 e x p ( − ∣ ∣ t − w φ ∣ ∣ 2 2 σ 2 ) (3) p(t|w,\sigma^2)=(2\pi\sigma^2)^{-N/2}exp(-\frac{||t-w\varphi||^2}{2\sigma^2})\tag{3} p(tw,σ2)=(2πσ2)N/2exp(2σ2twφ2)(3)
式中: t = ( t 1 , t 2 , . . . , t N ) T , w = ( w 0 , w 1 , . . . , w n ) T t=(t_1,t_2,...,t_N)^T,w=(w_0,w_1,...,w_n)^T t=(t1,t2,...,tN)T,w=(w0,w1,...,wn)T, φ \varphi φ N ( N + 1 ) N(N+1) N(N+1)​的矩阵。

式(3)中的 w w w σ σ σ最大似然估计会导致过拟合,为约束参数,定义一个零均值高斯先验概率分布:
p ( w ∣ α ) = ∏ u = 0 N N ( w u ∣ 0 , α u − 1 ) (4) p(w|\alpha)=\prod_{u=0}^NN(w_u|0,\alpha_u^{-1})\tag{4} p(wα)=u=0NN(wu0,αu1)(4)
式中: α α α N + 1 N +1 N+1 维的超参数向量。

依据贝叶斯公式,未知参数的后验概率为:
p ( w , α , σ 2 ∣ t ) = p ( w ∣ α , σ 2 , t ) p ( α , σ 2 ∣ t ) (5) p(w,\alpha,\sigma^2|t)=p(w|\alpha,\sigma^2,t)p(\alpha,\sigma^2|t)\tag{5} p(w,α,σ2t)=p(wα,σ2,t)p(α,σ2t)(5)
后验分布的权重被描述为:
p ( w ∣ t , α , σ 2 ) = ( 2 π ) − ( N + 1 ) / 2 ∣ Σ ∣ − 1 / N e x p ( − 1 2 ( w − u ) T Σ − 1 ( w − u ) ) (6) p(w|t,\alpha,\sigma^2)=(2\pi)^{-(N+1)/2}|\Sigma|^{-1/N}exp(-\frac{1}{2}(w-u)^T\Sigma ^{-1}(w-u))\tag{6} p(wt,α,σ2)=(2π)(N+1)/2Σ1/Nexp(21(wu)TΣ1(wu))(6)
式中:后验均值 u = σ − 2 Σ φ T t u=\sigma^{-2}\Sigma\varphi^Tt u=σ2ΣφTt,协方差 Σ = ( σ − 2 φ T φ + A ) − 1 \Sigma=(\sigma^{-2}\varphi^T\varphi+A)^{-1} Σ=(σ2φTφ+A)1, A = d i a g ( α 0 , α 1 , . . . , α N ) A=diag(\alpha_0,\alpha_1,...,\alpha_N) A=diag(α0,α1,...,αN)​。

为了实现统一的超参数,​做出如下定义:
p ( t ∣ α , σ 2 ) = ∫ p ( t ∣ w , σ 2 ) p ( w , α ) d w = ( 2 π ) − N / 2 ∣ σ 2 I + φ A − 1 φ T ∣ e x p ( − 1 2 t T ( σ 2 I + φ A − 1 φ T ) − 1 t ) (7) p(t|\alpha,\sigma^2)=\int p(t|w,\sigma^2)p(w,\alpha)dw =(2\pi)^{-N/2}|\sigma^2I+\varphi A^{-1}\varphi^T|exp(-\frac{1}{2}t^T(\sigma^2I + \varphi A^{-1}\varphi^T)^{-1}t)\tag{7} p(tα,σ2)=p(tw,σ2)p(w,α)dw=(2π)N/2σ2I+φA1φTexp(21tT(σ2I+φA1φT)1t)(7)
高斯径向基函数具有较强的非线性处理能力,被用作核函数,其定义如下:
K ( x , x u ) = e x p ( − ( x − x u ) 2 2 γ 2 ) (7) K(x,x_u)=exp(-\frac{(x-x_u)^2}{2\gamma^2})\tag{7} K(x,xu)=exp(2γ2(xxu)2)(7)
式中: γ γ γ 为宽度因子,对模型的精度有极大的影响,需要预先设定。

2.基于麻雀算法优化的相关向量机RVM

麻雀算法的基本原理请参考我的博客:https://blog.csdn.net/u011835903/article/details/108830958

本文利用麻雀算法优化RVM的宽度因子和超参数。适应度函数设计为训练集预测结果与真实值的MSE。MSE越低表明算法的预测性能越好。
f i t n e s s = M S E ( P r e d i c t − t r u t h ) (8) fitness = MSE(Predict - truth) \tag{8} fitness=MSE(Predicttruth)(8)

3.算法实验与结果

本文算法数据数量一共为250组数据。其中前200组数据用训练,后50组数据用作测试数据。数据的输入维度为2维,输出维度为1维。

数据类别数据量
训练数据200
测试数据50

设置麻雀算法的参数如下:

%% 麻雀参数设置
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 3;% 维度为2,即优化两个超参数,已经核宽度
lb = [0.1,0.1,0.1];%下边界
ub = [1,1,10];%上边界

请添加图片描述
请添加图片描述
请添加图片描述

RVM训练集MSE:0.0010558
RVM测试集MSE:0.0016356
SSA-RVM训练集MSE:3.1329e-06
SSA-RVM测试集MSE:5.2491e-06

从结果曲线,和训练集MSE以及测试集MSE来看,SSA-RVM相比基础RVM在回归预测问题上表现了较好的结果。

3.参考文献:

[1] TIPPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The journal of machine learning research,2001,1: 211-244.

4.MATLAB代码

在这里插入图片描述

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值