基于蝗虫算法改进的随机森林回归算法

本文介绍了如何使用蝗虫算法改进随机森林回归算法,通过调整树木个数和最小叶子节点数,以降低训练集和测试集的均方误差(MSE),实验证明了优化后的算法在回归预测准确性上的提升。
摘要由CSDN通过智能技术生成

基于蝗虫算法改进的随机森林回归算法


摘要:为了提高随机森林数据的回归预测准确率,对随机森林中的树木个数和最小叶子点数参数利用蝗虫搜索算法进行优化。

1.数据集

数据信息如下:

data.mat 的中包含input数据和output数据

其中input数据维度为:2000*2

其中output数据维度为2000*1

所以RF模型的数据输入维度为2;输出维度为1。

2.RF模型

随机森林请自行参考相关机器学习书籍。

3.基于蝗虫算法优化的RF

蝗虫算法原理请参考:https://blog.csdn.net/u011835903/article/details/107694862

蝗虫算法的优化参数为RF中树木个数和最小叶子节点数。适应度函数为RF对训练集和测试集的均方误差(MSE),均方误差MSE越低越好。
f i n t e n e s s = M S E [ p r e d i c t ( t r a i n ) ] + M S E [ p r e d i c t ( t e s t ) ] finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]

4.测试结果

数据划分信息如下: 训练集数量为1900组,测试集数量为100组

蝗虫参数设置如下:

%% 定义蝗虫优化参数
pop=20; %种群数量
Max_iteration=30; %  设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点树
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从MSE结果来看,经过改进后的SSA-RF明显优于未改进前的结果。

5.Matlab代码

6.Python代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值