基于动物迁徙算法优化的lssvm回归预测

本文介绍了如何利用动物迁徙算法对LSSVM的惩罚参数和核惩罚参数进行优化,以提高回归预测的准确性。通过将数据集划分为训练集和测试集,使用Matlab实现的SSA算法寻找最佳参数组合,结果显示改进后的SSA-LSSVM在MSE上表现更优。
摘要由CSDN通过智能技术生成

基于动物迁徙算法优化的lssvm回归预测 - 附代码


摘要:为了提高最小二乘支持向量机(lssvm)的回归预测准确率,对lssvm中的惩罚参数和核惩罚参数利用动物迁徙算法进行优化。

1.数据集

数据信息如下:

data.mat 的中包含input数据和output数据

其中input数据维度为:2000*2

其中output数据维度为2000*1

所以RF模型的数据输入维度为2;输出维度为1。

2.lssvm模型

lssvm请自行参考相关机器学习书籍。

3.基于动物迁徙算法优化的LSSVM

动物迁徙算法原理请参考:https://blog.csdn.net/u011835903/article/details/118729845

动物迁徙算法的优化参数为惩罚参数和核惩罚参数。适应度函数为LSSVM对训练集和测试集的均方误差(MSE),均方误差MSE越低越好。
f i n t e n e s s = M S E [ p r e d i c t ( t r a i n ) ] + M S E [ p r e d i c t ( t e s t ) ] finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]

4.测试结果

数据划分信息如下: 训练集数量为1900组,测试集数量为100组

动物迁徙参数设置如下:

%% 利用动物迁徙算法选择回归预测分析最佳的SVM参数c&g
%%  动物迁徙参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test); 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [0.01,0.01];
ub = [5,5];
%  参数设置
pop =20; %动物迁徙数量
Max_iteration=5;%最大迭代次数             
%% 优化(这里主要调用函数)
[Best_pos,Best_score,curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj); 

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从MSE结果来看,经过改进后的SSA-LSSVM明显优于未改进前的结果。

5.Matlab代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值